Answer:
D. Nothing will happen; the seesaw will still be balanced.
Explanation:
D. Nothing will happen; the seesaw will still be balanced. Since both toruqes or momentums respect to the center have changed in the same amount (one-half their original distance) the seesaw will remain balanced, if the children change distance in a different amount then it will be out of balance
B) 14.0 N
The way to solve this problem is to determine the kinetic energy the box had before and after the rough patch of floor. The equation for kinetic energy is:
E = 0.5 M V^2
where
E = Energy
M = Mass
V = velocity
Substituting the known values, let's calculate the before and after energy.
Before:
E = 0.5 M V^2
E = 0.5 13.5kg (2.25 m/s)^2
E = 6.75 kg 5.0625 m^2/s^2
E = 34.17188 kg*m^2/s^2 = 34.17188 joules
After:
E = 0.5 M V^2
E = 0.5 13.5kg (1.2 m/s)^2
E = 6.75 kg 1.44 m^2/s^2
E = 9.72 kg*m^2/s^2 = 9.72 Joules
So the box lost 34.17188 J - 9.72 J = 24.451875 J of energy over a distance of 1.75 meters. Let's calculate the loss per meter by dividing the loss by the distance.
24.451875 J / 1.75 m = 13.9725 J/m = 13.9725 N
Rounding to 1 decimal place gives 14.0 N which matches option "B".
Answer:
23.1 N/C
Explanation:
OP = 3 m , OQ = 4 m

q = - 8 nC, Q = 75 nC
Electric field at P due to the charge Q is

Electric field at P due to the charge q is

According to the diagram, tanθ = 3/4
Resolve the components of E1 along x axis and along y axis.
So, Electric field along X axis, Ex = - E1 Cos θ
Ex = - 27 x 4 / 5 = - 21.6 N/C
Electric field along y axis, Ey = E1 Sinθ - E2
Ey = 27 x 3 /5 - 8 = 8.2 N/C
The resultant electric field at P is given by

Answer:
B
Explanation:
This is the correct answer because given that this is a closed system, this means that energy is not lost but only changes form. The fact that the ball bounces shorter each time shows that energy is being transformed and not lost. Because of this, the ball must be transforming kinetic energy into sound which is why B is correct