Answer:
8.5 m/s
Explanation:
please see paper for the work!
Answer:
741 J/kg°C
Explanation:
Given that
Initial temperature of glass, T(g) = 72° C
Specific heat capacity of glass, c(g) = 840 J/kg°C
Temperature of liquid, T(l)= 40° C
Final temperature, T(2) = 57° C
Specific heat capacity of the liquid, c(l) = ?
Using the relation
Heat gained by the liquid = Heat lost by the glass
m(l).C(l).ΔT(l) = m(g).C(g).ΔT(g)
Since their mass are the same, then
C(l)ΔT(l) = C(g)ΔT(g)
C(l) = C(g)ΔT(g) / ΔT(l)
C(l) = 840 * (72 - 57) / (57 - 40)
C(l) = 12600 / 17
C(l) = 741 J/kg°C
Wavelength = c/f.
Wavelength =0.5km
Answer:L=109.16 m
Explanation:
Given
initial temperature 
Final Temperature 
mass flow rate of cold fluid 
Initial Geothermal water temperature 
Let final Temperature be T
mass flow rate of geothermal water 
diameter of inner wall 

specific heat of water 
balancing energy
Heat lost by hot fluid=heat gained by cold Fluid




As heat exchanger is counter flow therefore





heat lost or gain by Fluid is equal to heat transfer in the heat exchanger
(LMTD)




C. It depends on the medium