Hi :) If your answers choices are what I'm thinking, the answer is two :)
The answer is "night sky"
hope i helped :)
From the periodic table:
mass of carbon = 12 grams
mass of hydrogen = 1 gram
mass of chlorine = 35.5 grams
Therefore,
molar mass of CH2Cl2 = 12 + 2(1) + 2(35.5) = 85 grams
number of moles = mass / molar mass
number of moles of CH2Cl2 = 66.05 / 85 = 0.777 moles
One mole of CH2Cl2 contains two moles of Cl and each chlorine mole has Avogadro's number of atoms in it.
Therefore,
number of chlorine atoms in 0.777 moles of CH2Cl2 can be calculated as follows:
number of atoms = 0.777 * 2 * 6.022 * 10^23 = 9.358 * 10^23 atoms
Now, we will take log base 10 for this number:
log (9.358 * 10^23) = 23.97119
Answer:
6.23 x 10^23 molecules
Explanation:
First find the number of moles of BH3 from the information given. We know the amount of grams present and we can find the molar mass which is 13.84.
We know that moles is grams divided by molar mass so we get 14.32/13.84 which is 1.03 moles.
Finally, to figure out the number of molecules, we multiply 1.03 by Avogadro's number which is 6.022x10^23 and we get 6.23x10^23 molecules.
Group 8 elements. They are unreactive and stable