J.J. Thomson hypothesized and discovered that the atom was not the smallest unit of matter but that instead there were much smaller units. He discovered "sub-atomic particles" which make up atoms. The sub-atomic particle that Thomson discovered was the electron. He discovered this through a process of experiments testing cathode rays.
Explanation:
The given chemical reaction is:


The relation between Eo cell and Keq is shown below:

The value of Eo cell is:
Br- undergoes oxidation and I2 undergoes reduction.
Reduction takes place at cathode.
Oxidation takes place at anode.
Hence,

F=96485 C/mol
n=2 mol
R=8.314 J.K-1.mol-1
T=298K
Substitute all these values in the above formula:

Answer:
Keq=6.13x10^33
Explanation:
The given data is as follows.
, 
Work produced per kJ of heat extracted from hot reservoir = 0.45 kJ = Efficiency
If the device is Carnot cycle then its efficiency will be maximum and its value will be equal to ![[1 - (\frac{T_{c}}{T_{h}} )]](https://tex.z-dn.net/?f=%5B1%20-%20%28%5Cfrac%7BT_%7Bc%7D%7D%7BT_%7Bh%7D%7D%20%29%5D)
Using this relation we will calculate the efficiency as follows.
Efficiency = ![[1 - (\frac{T_{c}}{T_{h}} )]](https://tex.z-dn.net/?f=%5B1%20-%20%28%5Cfrac%7BT_%7Bc%7D%7D%7BT_%7Bh%7D%7D%20%29%5D)
=
= 0.928
Hence, it means that this type of device is possible and the claim is also believable.
The balanced equation between NaOH and H₂SO₄ is as follows
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
number of moles of NaOH moles reacted = molarity of NaOH x volume
number of NaOH moles = 0.08964 mol/L x 27.86 x 10⁻³ L = 2.497 x 10⁻³ mol
according to molar ratio of 2:1
2 mol of NaOH reacts with 1 mol of H₂SO₄
therefore 2.497 x 10⁻³ mol of NaOH reacts with - 1/2 x 2.497 x 10⁻³ mol of H₂SO₄
number of moles of H₂SO₄ reacted - 1.249 x 10⁻³ mol
Number of H₂SO₄ moles in 34.53 mL - 1.249 x 10⁻³ mol
number of H₂SO₄ moles in 1000 mL - 1.249 x 10⁻³ mol / 34.53 x 10⁻³ L = 0.03617 mol
molarity of H₂SO₄ is 0.03617 M
Answer:
pH = 2.69
Explanation:
The complete question is:<em> An analytical chemist is titrating 182.2 mL of a 1.200 M solution of nitrous acid (HNO2) with a solution of 0.8400 M KOH. The pKa of nitrous acid is 3.35. Calculate the pH of the acid solution after the chemist has added 46.44 mL of the KOH solution to it.</em>
<em />
The reaction of HNO₂ with KOH is:
HNO₂ + KOH → NO₂⁻ + H₂O + K⁺
Moles of HNO₂ and KOH that react are:
HNO₂ = 0.1822L × (1.200mol / L) = <em>0.21864 moles HNO₂</em>
KOH = 0.04644L × (0.8400mol / L) = <em>0.0390 moles KOH</em>
That means after the reaction, moles of HNO₂ and NO₂⁻ after the reaction are:
NO₂⁻ = 0.03900 moles KOH = moles NO₂⁻
HNO₂ = 0.21864 moles HNO₂ - 0.03900 moles = 0.17964 moles HNO₂
It is possible to find the pH of this buffer (<em>Mixture of a weak acid, HNO₂ with the conjugate base, NO₂⁻), </em>using H-H equation for this system:
pH = pKa + log₁₀ [NO₂⁻] / [HNO₂]
pH = 3.35 + log₁₀ [0.03900mol] / [0.17964mol]
<h3>pH = 2.69</h3>