I believe this is what you have to do:
The force between a mass M and a point mass m is represented by

So lets compare it to the original force before it doubles, it would just be the exact formula so lets call that F₁
So F₁ = G(Mm/r^2)
Now the distance has doubled so lets account for this in F₂:
F₂ = G(Mm/(2r)^2)
Now square the 2 that gives you four and we can pull that out in front to give
F₂ =
G(Mm/r^2)
Now we can replace G(Mm/r^2) with F₁ as that is the value of the force before alterations
now we see that:
F₂ =
F₁
So the second force will be 0.25 (1/4) x 1600 or 400 N.
In order to calculate the amount of energy required, we must first check the latent heat of vaporization of water from literature. The latent heat of vaporization of any substance is the amount of energy required per unit mass to convert that substance from a solid to a liquid. For water this is 2,260 J/g. We now use the formula:
Energy = mass * latent heat
Q = 50 * 2,260
Q = 113,000 J
113,000 Joules of heat energy are required.
This gots to be the answer, average, seawater in the world's oceans has a salinity of approximately 3.5%, or 35 parts per thousand.
The potential energy decreases while the kinetic energy increases.
If the net force on a block is zero, the block will move at constant velocity
Explanation:
We can answer this question by applying Newton's second law of motion, which states that the net force on an object is equal to the product between its mass and its acceleration:
(1)
where
is the net force on the object
m is its mass
a is its acceleration
In this problem, we have a block, and the net force on it is zero:

According to eq.(1), this also implies that

So, the acceleration of the block is zero.
However, acceleration is the rate of change of velocity of a body:

where
is the change in velocity in a time of
. Since the acceleration is zero, this means that
, and therefore the velocity of the object is constant.
Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly