Buoyant force is the force that is a result from the pressure exerted by a fluid on the object. We calculate this value by using the Archimedes principle where it says that the upward buoyant force that is being exerted to a body that is immersed in the fluid is equal to the fluid's weight that the object has displaced. Buoyant force always acts opposing the direction of weight. We calculate as follows:
Fb = W
Fb = mass (acceleration due to gravity)
Fb = 64.0 kg ( 9.81 m/s^2)
Fb = 627.84 kg m/s^2
Therefore, the buoyant force that is exerted on the diver in the sea water would be 627.84 N
So mathematical harmonics are based around a divergent set of fractions. Sigma(1/n)
with the 1st harmonic being... well 1, or 1 full wavelength.The second harmonic is exactly 1/2 the wavelength of the 1st with the third being 1/3 the wavelength. As Wavelengths go down, frequencies go up in a perfect ratio.
Second Harmonic has double the Frequency of the 1st or base note. Third Harmonic is triple and so on.
So the Harmonic set of 375 is.
1. 375
2. 375×2=750
3. 375×3= 1125
.
.
.
etc (: I hope this helps.
The second option is the correct one. m/s^2
The missing part of the incomplete question is given below:
Which important step of scientific design is Shameka conducting?
repetition
replication
verification of results
using controlled variables
Answer:
Verification of results
Explanation:
The way toward gathering five examples of water from various sources is conveyed to confirm the outcome. By gathering water from five distinct areas of a similar source the analyst can genuinely find out the nature of the water in her region of remain.
On the off chance that after examples are tried it is found the water isn't sound, the outcomes would be acknowledged as it has been appropriately checked and a proper move would be made.
Thus, the correct answer is - verification of results