Answer:
Time period between the successive beats will be 0.1703 sec
Explanation:
We have given speed of the sound v = 349 m/sec
Wavelength of piano 
Wavelength of piano 
So frequency of piano A 
Frequency of piano B 
So beat frequency f = 455.61 - 449.74 = 5.87 Hz
So time period 
So time period between the successive beats will be 0.1703 sec
Electroreception is limited to aquatic environments because on here is the resistivity of the medium is low enough for electric currents to be generated as the result of electric fields of biological origin. In air, the resistivity of the environment is so high that electric fields from biological sources do not generate a significant electric current. Electroreceptor are found in a number of species of fish, and in at least one species of mammal, the Duck-Billed platypus.
Answer:
Circuit one will have more current than circuit two
Explanation:
I am assuming that you have to see which circuit has the greater current in this case. Well, this is the perfect example of Ohm's Law, which states the following -
V = IR,
where V = voltage / potential difference, I = current, and R = resistance
If one circuit has twice the voltage and half the resistance of the second circuit, as voltage is directly proportional to the resistance -
2V = I( 1 / 2R ),
4V = IR,
I = 4V / R
Whereas in the second circuit -
V = IR,
I = V / R
As you can note, voltage is directly proportional to the current ( I ) as well as the resistance. The only difference between the two formulas I = 4V / R, and I = V / R is the difference in the voltage. With the voltage being 4 times greater in the first circuit, and current is 4 times greater in the first circuit as well.
<u><em>Hence, circuit one will have more current than circuit two</em></u>
Answer:
The specific heat capacity of iridium = 0.130 J/g°C
Explanation:
Assuming no heat losses to the environment and to the calorimeter,
Heat lost by the iridium sample = Heat gained by water
Heat lost by the iridium sample = mC ΔT
m = mass of iridium = 23.9 g
C = specific heat capacity of the iridium = ?
ΔT = change in temperature of the iridium = 89.7 - 22.6 = 67.1°C
Heat lost by the iridium sample = (23.9)(C)(67.1) = (1603.69 C) J
Heat gained by water = mC ΔT
m = mass of water = 20.0 g
C = 4.18 J/g°C
ΔT = 22.6 - 20.1 = 2.5°C
Heat gained by water = 20 × 4.18 × 2.5 = 209 J
Heat lost by the iridium sample = Heat gained by water
1603.69C = 209
C = (209/1603.69) = 0.130 J/g°C