Answer:
40 N
Explanation:
We are given that
Speed of system is constant
Therefore, acceleration=a=0
Tension applied on block B=T=50 N
Friction force=f=10 N
We have to find the friction force acting on block A.
Let T' be the tension in string connecting block A and block B and friction force on block A be f'.
For Block B

Where
=Mass of block B
Substitute the values


For block A

Where
Mass of block A
Substitute the values


Hence, the friction force acting on block A=40 N
Answer:
F=ma is the relationship where, F is force, m is mass and a is acceleration.
Newton's second law states that the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.
If we apply force to a toy car then It will accelerate.
This is how Newton's second law of motion is verified.
"Acceleration" means any change in the speed or direction of motion ... speeding up, slowing down, or turning. So . . .
<span>-- </span><span>The distance traveled in a certain time may increase or decrease.
-- The displacement covered in a certain time may increase or decrease.
-- The speed of the object may increase or decrease.
-- The velocity of the object (speed/direction) will change.
</span>
Hope this helps..
Answer:
371.2 mm
Explanation:
The Balmer series of spectral lines is obtained from the formula
1/λ = R(1/2² -1/n²) where λ = wavelength, R = Rydberg's constant = 1.097 × 10⁷ m⁻¹
when n = 15
1/λ = 1.097 × 10⁷ m⁻¹(1/2² -1/15²)
= 1.097 × 10⁷ m⁻¹(1/4 -1/225)
= 1.097 × 10⁷ m⁻¹(0.25 - 0.0044)
= 1.097 × 10⁷ m⁻¹ 0.245556
= 2.693 10⁶ m⁻¹
So,
λ = 1/2.693 10⁶ m⁻¹
= 0.3712 10⁻⁶ m
= 371.2 mm
Answer:
(a) Energy density will be equal to 
(b) Total energy will be equal to 0.0718 J
Explanation:
It is given that length of solenoid l = 78.8 cm = 0.788 m
Cross sectional area 
Number of turns of the wire N = 914
Current in the solenoid i = 8.25 A
Inductance of the wire is equal to 
(b) Total energy stored in magnetic field 
(a) Energy density will be equal to
