Answer:
8
Step-by-step explanation:
(4)(3)−22
=8
You can use the measure of 112 on the similar shape to find b, as they are same side exterior angles. From there, you can find both a and c, because a/b and b/c are supplementary angles.
a = 68 degrees
c = 68 degrees
The first thing we must do in this case is find the derivatives:
y = a sin (x) + b cos (x)
y '= a cos (x) - b sin (x)
y '' = -a sin (x) - b cos (x)
Substituting the values:
(-a sin (x) - b cos (x)) + (a cos (x) - b sin (x)) - 7 (a sin (x) + b cos (x)) = sin (x)
We rewrite:
(-a sin (x) - b cos (x)) + (a cos (x) - b sin (x)) - 7 (a sin (x) + b cos (x)) = sin (x)
sin (x) * (- a-b-7a) + cos (x) * (- b + a-7b) = sin (x)
sin (x) * (- b-8a) + cos (x) * (a-8b) = sin (x)
From here we get the system:
-b-8a = 1
a-8b = 0
Whose solution is:
a = -8 / 65
b = -1 / 65
Answer:
constants a and b are:
a = -8 / 65
b = -1 / 65
Answer:
111
Step-by-step explanation: