Answer:
d: 39W
Explanation:
Power(P) = w/t = F*d/t = F*v = m*a*v= 2*9.8*2 = 39.2W
Highest to lowest number:
-less than 1 solar mass
-between 1 and 10 solar masses
-between 10 and 30 solar masses
-between 30 and 60 solar masses
<h3>What is Stellar masses ?</h3>
Stellar mass is a phrase that is used by astronomers to describe the mass of a star.
- It is usually enumerated in terms of the Sun's mass as a proportion of a solar mass ( M ☉). Hence, the bright star Sirius has around 2.02 M ☉.
- Stellar masses are not fixed, although they change for single stars only on long periods.
Learn more about Stellar masses here:
brainly.com/question/1128503
#SPJ4
Answer:
The burden distance is 7 ft
Solution:
As per the question:
Specific gravity of package emulsion, 
Specific gravity of diabase rock, 
Diameter of the packaged sticks, d = 3 in
Now,
To calculate the first trail shot burden distance, B:
![B = [\frac{2SG_{E}}{SG_{R}} + 1.5]\times d](https://tex.z-dn.net/?f=B%20%3D%20%5B%5Cfrac%7B2SG_%7BE%7D%7D%7BSG_%7BR%7D%7D%20%2B%201.5%5D%5Ctimes%20d)
![B = [\frac{2\times 1.25}{2.76} + 1.5]\times 3 = 7.22](https://tex.z-dn.net/?f=B%20%3D%20%5B%5Cfrac%7B2%5Ctimes%201.25%7D%7B2.76%7D%20%2B%201.5%5D%5Ctimes%203%20%3D%207.22)
B = 7 ft
Let's be clear: The plane's "395 km/hr" is speed relative to the
air, and the wind's "55 km/hr" is speed relative to the ground.
Before the wind hits, the plane moves east at 395 km/hr relative
to both the air AND the ground.
After the wind hits, the plane still maintains the same air-speed.
That is, its velocity relative to the air is still 395 km/hr east.
But the wind vector is added to the air-speed vector, and the
plane's velocity <span>relative to the ground drops to 340 km/hr east</span>.
Answer:
1 V / div
Explanation:
Solution:
- The vertical scale has eight divisions.
- If each division is set to equal 1 volt, the display will show 0 to 8 volts.
- This is okay in a 0 to 5 volt variable sensor such as a throttle position (TP) sensor.
- The volts per division (V/div) should be set so that the entire anticipated waveform can be viewed.