Answer:
The first part can be solved via conservation of energy.

For the second part,
the free body diagram of the car should be as follows:
- weight in the downwards direction
- normal force of the track to the car in the downwards direction
The total force should be equal to the centripetal force by Newton's Second Law.

where
because we are looking for the case where the car loses contact.

Now we know the minimum velocity that the car should have. Using the energy conservation found in the first part, we can calculate the minimum height.

Explanation:
The point that might confuse you in this question is the direction of the normal force at the top of the loop.
We usually use the normal force opposite to the weight. However, normal force is the force that the road exerts on us. Imagine that the car goes through the loop very very fast. Its tires will feel a great amount of normal force, if its velocity is quite high. By the same logic, if its velocity is too low, it might not feel a normal force at all, which means losing contact with the track.
The microwave ovens rotate at a rate of about 0.105 rev/s.
The microwave rotation is the number of revolutions in a unit of time. To change the unit for angular velocity, assume that the quantity is multiplied by the unit it has. Then change to the desired units. The angular velocity is denoted by ω and has a magnitude of 6.3 rev/min.
ω = 6.3 rev/min

- 1 minute = 60 seconds
- The revolution unit didn't change


ω = 0.105 rev/s
Learn more about Angular velocity here: brainly.com/question/29344944
#SPJ4
Answer:
The answer to the question is
The two balls, although of different masses, could be made to have the same demolishing force by setting the velocity of the 100 kg ball to 1.5 times the velocity of the 150 kg ball.
That is if V₁ is the velocity of the 150 kg ball and V₂ is the velocity of the 100 kg ball then V₂ = 1.5×V₁ for the demolishing effect of the two balls to be equal.
Explanation:
To answer the we are required to explain the meaning of momentum and state its properties
Momentum is a physical property of an object in motion. It indicates the amount of motion inherent in the object. An object in motion is said to have momentum
The types of momentum possessed by an object can be classified into either
1, Linear momentum or
2. Angular momentum
An object moving with a velocity, v has linear momentum while a spinning object has an angular momentum
The momentum is given by the formula
P = m × V
Where m = mass and
V = velocity
Newtons second law of motion states that, the force acting on an object is equivalent to the rate of change of momentum produced and acting in the direction of the force
Properties of momentum
From the above statements it means that the two balls can be made equivalent by having the appropriate amount of speed. That iis the two balls can have the same momentum thus for equal momentum effect, we have
150 kg × V₁ = 100 kg × V₂
or V₂ = 1.5×V₁
It is converted to kinetic energy.
1. Resonance. Mechanical waves act on or through a medium, these waves can often have frequencies that are synchronized in a way that makes them act on the matter in the medium more "aggressively."