1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NikAS [45]
3 years ago
8

The Kentucky Derby is a 1¼ mile race. Mandaloun ran it in 1.52 minutes. Hot Rod Charlie ran at a speed of .79 miles per minute.

Who won the race?
Physics
1 answer:
artcher [175]3 years ago
6 0

Answer:

Mandaloun won the race.

Explanation:

First, we will calculate the time taken by the Hot Rod Charlie:

s = vt\\t = \frac{s}{v}

where,

t = time taken by Hot Rod Charlie = ?

s = distance covered = 1.25 miles

v = speed of Hot Rod Charlie = 0.79 miles/min

Therefore,

t = \frac{1.25\ miles}{0.79\ miles/min} \\t = 1.58 min

Since Hot Rod Charlie took more time (1.58 min) than the Mandaloun (1.52 min).

<u>Therefore Mandaloun won the race.</u>

You might be interested in
What is the explanation for how a modern transmission electron microscope (TEM) can achieve a resolution of about 0.2 nanometers
IgorC [24]

Answer:

Explanation:

A simple light microscope uses light for imaging of objects where as a transmission electron microscope uses a monochromatic beam of electrons.

This beam is passed by a magnetic field which is very strong and thus act as a lens.

Its resolution of very high which is about 0.2 nanometers because of the separation between two atoms.

Because of this reason its resolution is about 1000 times greater than light microscope.

3 0
3 years ago
Please help me
melamori03 [73]
<h2>Question:</h2>

An automobile is driving uphill. Which form of energy is not involved in this process?

<h2>Choosing:</h2>

electromagnetic

potential

kinetic

chemical

<h2>Answer:</h2>

<u>Electromagnetic</u><u> </u>

<h3><u>#READINGHELPSWITHLEARNING</u><u> </u></h3><h3><u>#CARRYONLEARNING</u><u> </u></h3><h3><u>#STUDYWELL</u><u> </u></h3>
7 0
3 years ago
An amusement park ride consists of a rotating circular platform 8.26 m in diameter from which 10 kg seats are suspended at the e
VashaNatasha [74]

To solve this problem we will begin by finding the necessary and effective distances that act as components of the centripetal and gravity Forces. Later using the same relationships we will find the speed of the body. The second part of the problem will use the equations previously found to find the tension.

PART A) We will begin by finding the two net distances.

r = \frac{8.26}{2} = 4.13m

And the distance 'd' is

d = lsin\theta

d = 1.14 sin 16.2\°

d = 0.318m

Through the free-body diagram the tension components are given by

Tcos\theta = mg

Tsin\theta = \frac{mv^2}{R}

Here we can watch that,

R = r+d

Dividing both expression we have that,

tan\theta = \frac{v^2}{Rg}

Replacing the values,

tan(16.2) = \frac{v^2}{(4.13+0.318)(9.8)}

v = 4.83371m/s

PART B) Using the vertical component we can find the tension,

Tcos\theta = mg

T = \frac{mg}{cos\theta}

T = \frac{(10+26.2)(9.8)}{cos(16.2)}

T = 369.42N

6 0
3 years ago
A carrot hangs from the ceiling by a rope,
valentina_108 [34]

Answer: Diagram B

Explanation:

A free body diagram shows the forces acting on an object in a certain scenario.

In this scenario there are two forces acting on the carrot: the Tension force (Ft) from the rope that the carrot is hanging from and Gravitational force(Fg) which is pulling the carrot to the Earth.

The diagram depicting this is diagram B.

7 0
3 years ago
Read 2 more answers
An electron in a cathode-ray beam passes between 2.5cm long parallel-plate electrodes that are 6.0mm apart. A 2.1mT, 2.5-cm-wide
Dmitry_Shevchenko [17]

Answer:

(a). The speed of electron is 1.56\times10^{7}\ m/s.

(b). The radius of electron is 4.2\ cm

Explanation:

Given that,

Length = 2.5 cm

Distance = 6.0 mm

Magnetic field = 2.1 T

Potential difference = 700 V

(a). We need to calculate the electron's speed

Using formula of speed

v=\sqrt{\dfrac{2eV}{m}}

Put the value into the formula

v=\sqrt{\dfrac{2\times1.6\times10^{-19}\times700}{9.1\times10^{-31}}}

v=15689290.81\ m/s

v=1.56\times10^{7}\ m/s

(b). We need to calculate the radius of electron

Using formula of centripetal force

\dfrac{mv^2}{r}=qvB

r=\dfrac{mv}{qB}

Where,

m = mass of electron

v = speed of electron

r = radius

q = charge of electron

B = magnetic field

Put the value into the formula

r=\dfrac{9.1\times10^{-31}\times1.56\times10^{7}}{1.6\times10^{-19}\times2.1\times10^{-3}}

r=0.042\ m

r=4.2\ cm

Hence, (a). The speed of electron is 1.56\times10^{7}\ m/s.

(b). The radius of electron is 4.2 cm

8 0
3 years ago
Other questions:
  • I need help with the following three physics problems please!
    14·1 answer
  • An 880n box is pushed across a level floor for a distance of 5.0m with a force of 440n. how much work was done on the box
    12·1 answer
  • What golf skill should you be working on as a beginner golfer ?
    5·2 answers
  • E14. A ball rolls off a table with a horizontal velocity of 5 m/s. If
    6·1 answer
  • In atoms, electrons surround the nucleus in
    13·1 answer
  • According to Le Châtelier’s principle, what happens when a system in equilibrium is subjected to a change?
    14·2 answers
  • 19. The term, The Mad as a Hatter, began in 19th century Europe because hatmakers used mercury.
    14·1 answer
  • Earth's _____ cycle moves water from one reservoir to another. This cycling of materials is one of Earth's dynamic processes.
    5·2 answers
  • If 2 objects are moved by the same force (F):
    13·2 answers
  • A spaceprobe in outer space is flying with a constant speed of 1.795 km/s. The probe has a payload of 1635.0 kg and it carries 4
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!