Answer:
0.7 kg m²
Explanation:
F = force exerted applied by muscle in a professional boxer = 2551 N
r = length of lever arm = 3.15 cm = 0.0315 m
α = angular acceleration of the forearm = 115 rad/s²
I = moment of inertia of the boxer's forearm
τ = Torque applied by muscle in a professional boxer
Torque is given as
τ = I α = r F
Inserting the values
I (115) = (0.0315) (2551)
I = 0.7 kg m²
They carry opposite charge ( one has negative charge and one has positive charge)
Answer: 
Explanation:
Given
At an elevation of
, spacecraft is dropping vertically at a speed of 
Final velocity of the spacecraft is 
using equation of motion i.e. 
Insert the values

Therefore, magnitude of acceleration is
.
Answer:
The average force ≅ 519.44 N.
Explanation:
Impulse = change in momentum of a body
i.e Ft = m(v - u)
where F is the force, t is the time, m is the mass of the body, v is the final velocity and u is the initial velocity.
m = 55.0 g (0.055 Kg), t = 0.00360 s, v = 34.0 m/s, since the ball was initially at rest; u = 0 m/s
So that,
F x 0.00360 = 0.055(34 - 0)
F x 0.00360 = 0.055 x 34
= 1.87
F = 
= 519.4444
The average force exerted on the ball by the club is approximately 519.44 N.
(198,000 joule / 15 minute) x (minute / 60 sec) = 220 joule/sec = <em>220 watts
</em>