Think of it like a graph. You start at the origin which is (0,0). go three to the east which now you are (3,0). Then, six to the north. Now, you are at (3,6). 1 to the east, ((4,6). Then you go 4 to the west which is back tracking. So, you end at (0,6) which is saying you are now 6 km north from your campsite.
Hope this helps!
Answer:
Distance = 13.9 meters
Explanation:
Given the following data;
Maximum speed = 150 km/hr to meters per seconds = 150 * 1000/3600 = 41.67 m/s
Decelerating speed = 3m/s
To find the distance travelled with this speed;
Distance = maximum speed/decelerating speed
Distance = 41.67/3
Distance = 13.9 meters
Therefore, the bus would travel a distance of 13.9 meters before stopping.
The spiral structure emerges when galactic clusters (open), H II regions and O & B type stars (young stars) are used as tracers. We know this to be true as other pinwheel galaxies exhibit the same patterns across these tracers as in the milky way.
Answer: The fundamental frequency of the slinky = 8Hz
An input frequency of 28 Hz will not create a standing wave
Explanation:
Let Fo = fundamental frequency
At third harmonic,
F = 3Fo
If F = 24Hz
24 = 3Fo
Fo = 24/3 = 8Hz
If an input frequency = 28 Hz at 3rd harmonic
Let find the fundamental frequency
28 = 3Fo
Fo = 28/3
Fo = 9.33333Hz
Since Fo isn't a whole number, it can't create a standing wave