Answer: (-4,5)
Step-by-step explanation:
Rotating 90 deg. counterclockwise maps (x,y) onto (-y,x), so (5,4) maps onto (-4,5).
By the Central Limit Theorem, the best point estimate for the mean GPA for all residents of the local apartment complex is 1.7.
The Central Limit Theorem established that, for a normally distributed random variable X, with mean and standard deviation, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean and standard deviation ;
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this problem, we have that:
The sample of 112 residents has a mean GPA of 1.7.
By the Central Limit Theorem, the best point estimate for the mean GPA for all residents of the local apartment complex is 1.7.
Learn more about Mean:
brainly.com/question/4313883
#SPJ4
<span>To create a flexible street/block pattern that would accommodate a range of densities and residential and recreational uses, the Canadian planners adapted the street grid of Savannah to allow development of individual but continuous neighborhoods.</span><span>
The original </span>plan actually called for six squares, and as the city grew the grid<span> of wards and squares was extended so that 33 square.
</span>
The sum of the given series can be found by simplification of the number
of terms in the series.
- A is approximately <u>2020.022</u>
Reasons:
The given sequence is presented as follows;
A = 1011 + 337 + 337/2 + 1011/10 + 337/5 + ... + 1/2021
Therefore;
The n + 1 th term of the sequence, 1, 3, 6, 10, 15, ..., 2021 is given as follows;
Therefore, for the last term we have;
2 × 2043231 = n² + 3·n + 2
Which gives;
n² + 3·n + 2 - 2 × 2043231 = n² + 3·n - 4086460 = 0
Which gives, the number of terms, n = 2020


Which gives;


Learn more about the sum of a series here:
brainly.com/question/190295
The error is that the numbers are not in order from least to greatest.
To find the median of data you need to first put the numbers in order from least to greatest.