If both waves have the same wavelength, then the amplitude of
their sum could be anything between 1 cm and 9 cm, depending
on the phase angle between them.
If the waves have different wavelengths, then the resultant is a beat
with an amplitude of 9 cm.
There's not enough information to find an answer.
I think the idea here is that in descending (416 - 278) = 138 meters,
the glider gives up some gravitational potential energy, which
becomes kinetic energy at the lower altitude. This is all well and
good, but we can't calculate the difference in potential energy
without knowing the mass of the glider.
Answer:
Explanation:
a) Energy stored in spring = 1/2 k x² = .5 x k 0.1²
500 = 5 x 10⁻³ k ,
k = (500/5) x 10³ = 10⁵ N/m
b )
k = 4.5 x 10¹ = 45 N/m
Stored energy = 1/2 k x² = .5 x 45 x 8² x 10⁻⁴ =1440 x 10⁻⁴ J
This energy gets dissipated by friction .
work done by friction = μ mg d
d is the distance traveled under friction
so 1440 x 10⁻⁴ = μ x 3 x 9.8 x 2
μ = 245 x 10⁻⁴ or 0.00245 which appears to be very small. .
Missing question in the text:
"A.What are the magnitude and direction of the electric field at the point in question?
B.<span>What would be the magnitude and direction of the force acting on a proton placed at this same point in the electric field?"</span>
<span>Solution:
A) A charge q </span>under an electric field of intensity E will experience a force F equal to:

In our problem we have
and
, so we can find the magnitude of the electric field:

The charge is negative, therefore it moves against the direction of the field lines. If the force is pushing down the charge, then the electric field lines go upward.
B) The proton charge is equal to

Therefore, the magnitude of the force acting on the proton will be

And since the proton has positive charge, the verse of the force is the same as the verse of the field, so upward.
The X and Y components of the force are 90.63 Newton and 42.26 Newton respectively.
<u>Given the following data:</u>
- Angle of inclination = 25°
To determine the X and Y components of the force:
<h3>The horizontal component (X) of a force:</h3>
Mathematically, the horizontal component of a force is given by this formula:

Fx = 90.63 Newton.
<h3>The vertical component (Y) of tensional force:</h3>
Mathematically, the vertical component of a force is given by this formula:

Fy = 42.26 Newton.
Read more on horizontal component here: brainly.com/question/4080400