Average speed is defined as total distance moved in total interval of time
so it is given as

now here is we show distance by "d" and time by"t"
then we will have mathematical expression as follows

Answer:
The answer to the question is
The distance d, which locates the point where the light strikes the bottom is 29.345 m from the spotlight.
Explanation:
To solve the question we note that Snell's law states that
The product of the incident index and the sine of the angle of incident is equal to the product of the refractive index and the sine of the angle of refraction
n₁sinθ₁ = n₂sinθ₂
y = 2.2 m and strikes at x = 8.5 m, therefore tanθ₁ = 2.2/8.5 = 0.259 and
θ₁ = 14.511 °
n₁ = 1.0003 = refractive index of air
n₂ = 1.33 = refractive index of water
Therefore sinθ₂ =
=
= 0.1885 and θ₂ = 10.86 °
Since the water depth is 4.0 m we have tanθ₂ =
or x₂ =
=
= 20.845 m
d = x₂ + 8.5 = 20.845 m + 8.5 m = 29.345 m.
Increasing the masses of the objects and decreasing the distance between the objects
Answer:
They can be rank in the following way:
- A radio signal from an AM radio station at 680 kHz on the dial
- Radiation from an FM radio station at 93.1 MHz on the dial
- The red light of a light-emitting diode, such as in a calculator
- The yellow light from sodium vapor streetlights
- The gamma rays produced by a radioactive nuclide used in medical
Explanation:
The electromagnetic spectrum is the distribution of radiation due to the different frequencies at which it radiates and its different intensities, that radiation is formed by electromagnetic waves, which are transverse waves formed by an electric field and a magnetic field perpendicular to it.
Radiation is distributed along that electromagnetic spectrum according to the wavelength or frequency.
Highest frequencies
X-rays
Ultraviolet rays
Visible region
Lower frequencies
Infrared
Microwave
Radio waves
Radio waves and the visible region (yellow light, red light) are part of the electromagnetic spectrum, any radiation of that electromagnetic spectrum has a speed of 3.00x10^{8}m/s in vacuum.
However, the following equation relates the velocity, the frequency, and the wavelength:
(1)
(2)
It can be see in equation 2 that the frequency and the wavelength are inversely proportional (when the frequency increases the wavelength decreases).
Therefore, for what was already discussed, they can be rank in the next way:
- A radio signal from an AM radio station at 680 kHz on the dial
- Radiation from an FM radio station at 93.1 MHz on the dial
- The red light of a light-emitting diode, such as in a calculator
- The yellow light from sodium vapor streetlights
- The gamma rays produced by a radioactive nuclide used in medical
Summary:
In the case of the radio waves can be used:
Case for
:


Case for
:


Answer:
29.76245 rad/s², -117.80972 rad/s²
28.2743 rad/s
3.95833
Explanation:
= Final angular velocity
= Initial angular velocity
= Angular acceleration
= Angle of rotation
t = Time taken
Equation of rotational motion

Angular acceleration during speed up is 29.76245 rad/s²

Angular acceleration during spin down is -117.80972 rad/s²
Angular speed is given by

Maximum angular speed reached by the flywheel is 28.2743 rad/s


The ratio would be 