Answer:
2.6×10⁻³ N
Explanation:
From coulomb's law,
F = kq'q/r²................ Equation 1
Where F = Repulsive force, q' = charge on the first sugar grain, q = charge on the second sugar grain, r = distance of separation between the sugar grain, k = proportionality constant.
From the question,
since q' = q
Then,
F = kq²/r²..................... Equation 2
Given: q = 1.79×10⁻¹¹ C, r = 3.45×10⁻⁵ m,
Constant: k = 9×10⁹ Nm²/kg².
Substitute into equation 2
F = 9×10⁹(1.79×10⁻¹¹)²/(3.45×10⁻⁵ )²
F = 9×10⁹(3.2041×10⁻²²)/(11.9025×10⁻¹⁰)
F = (28.8369×10⁻¹³)/(11.9025×10⁻¹⁰)
F = 2.6×10⁻³ N.
Answer:
Explanation:
Given
mas of car=870 kg
coffee mug mass=0.47 kg
coefficient of static friction between mug and roof 
Coefficient of kinetic Friction 
maximum car acceleration is 
here coefficient of static friction comes in to action because mug is placed over car . If mug is moving relative to car then \mu _k is come into effect

A leaf is organic matter because organic matter refers to anything from something living. because a leaf is living or was at one point it is organic matter
Answer:
By Applying pressure to the brakes
Explanation:
Driving cars through deep water that is more than 10cm can make the cars to float. Most modern cars are usually water- tight so they can start to float through water that is about 30cm deep, fast moving water is very powerful so one needs to be very careful when driving.
If the brakes are wet test them by pressing or tapping on them gently.
You can as well dry brakes by driving in low gear and applying pressure to the brakes.
Answer:
α = 1930.2 rad/s²
Explanation:
The angular acceleration can be found by using the third equation of motion:

where,
α = angular acceleration = ?
θ = angular displacement = (1500 rev)(2π rad/1 rev) = 9424.78 rad
ωf = final angular speed = 0 rad/s
ωi = initial angular speed = (960 rev/s)(2π rad/1 rev) = 6031.87 rad/s
Therefore,

<u>α = - 1930.2 rad/s²</u>
<u>negative sign shows deceleration</u>