We can answer the problem by Snell's Law:
Snell's law<span> (also known as </span>Snell<span>–Descartes </span>law<span> and the </span>law<span> of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.</span>
Answer:
0.143 m
Explanation:
The relationship between force applied on a string and stretching of the spring is given by Hooke's law:

where
F is the force exerted on the spring
k is the spring constant of the spring
x is the stretching of the spring from its equilibrium position
In this problem, we have:
F = 20 N is the force applied on the spring
k = 140 N/m is the spring constant
Solving for x, we find how far the spring will stretch:

Answer:
Particle spacing increases and it's called evaporating
A force field works the same as a shield. I protects what ever is inside, or behind the field.