1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cricket20 [7]
3 years ago
9

Nina can ride her bike 63,360 feet in 3,400 seconds, and Sophia can ride her bike 10 miles in 1 hour. What is Nina's

Mathematics
2 answers:
Lostsunrise [7]3 years ago
3 0

Answer:

nina  rate per mile is 4.7222225.

nina rides her bike for 12 miles

nina goes faster than sophia

Step-by-step explanation:

otez555 [7]3 years ago
3 0

Answer:

12.7

Nina

Step-by-step explanation:

You might be interested in
I NEED HELP ASAP WITH WORK SHOWN PLEASE GIVE ME AN ANSWER WITH WORK SHOWN Multiple choice questions The answers are 2.26,1.15,2.
HACTEHA [7]

Step-by-step explanation:

porportional means they scale by the same ratio

L / W = L_1 / W_2 = 5.4 / 2.5 = 6.21 / x

solve for x

3 0
3 years ago
Read 2 more answers
A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and
mr Goodwill [35]

Answer:

Bias for the estimator = -0.56

Mean Square Error for the estimator = 6.6311

Step-by-step explanation:

Given - A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and X2. The mean is estimated using the formula (3X1 + 4X2)/8.

To find - Determine the bias and the mean squared error for this estimator of the mean.

Proof -

Let us denote

X be a random variable such that X ~ N(mean = 4.5, SD = 7.6)

Now,

An estimate of mean, μ is suggested as

\mu = \frac{3X_{1} + 4X_{2}  }{8}

Now

Bias for the estimator = E(μ bar) - μ

                                    = E( \frac{3X_{1} + 4X_{2}  }{8}) - 4.5

                                    = \frac{3E(X_{1}) + 4E(X_{2})}{8} - 4.5

                                    = \frac{3(4.5) + 4(4.5)}{8} - 4.5

                                    = \frac{13.5 + 18}{8} - 4.5

                                    = \frac{31.5}{8} - 4.5

                                    = 3.9375 - 4.5

                                    = - 0.5625 ≈ -0.56

∴ we get

Bias for the estimator = -0.56

Now,

Mean Square Error for the estimator = E[(μ bar - μ)²]

                                                             = Var(μ bar) + [Bias(μ bar, μ)]²

                                                             = Var( \frac{3X_{1} + 4X_{2}  }{8}) + 0.3136

                                                             = \frac{1}{64} Var( {3X_{1} + 4X_{2}  }) + 0.3136

                                                             = \frac{1}{64} ( [{3Var(X_{1}) + 4Var(X_{2})]  }) + 0.3136

                                                             = \frac{1}{64} [{3(57.76) + 4(57.76)}]  } + 0.3136

                                                             = \frac{1}{64} [7(57.76)}]  } + 0.3136

                                                             = \frac{1}{64} [404.32]  } + 0.3136

                                                             = 6.3175 + 0.3136

                                                              = 6.6311

∴ we get

Mean Square Error for the estimator = 6.6311

6 0
3 years ago
The Answer to this math problem.
Alex787 [66]
32 students in 1 row
16 students in 2 rows
8 students in 4 rows
4 students in 8 rows
2 students in 16 rows
7 0
3 years ago
Read 2 more answers
A human resources representative claims that the proportion of employees earning more than $50,000 is less than 40%. To test thi
bearhunter [10]

Answer:

The statistic for this case would be:

z=\frac{\hat p -p_o}{\sqrt{\frac{\hat p(1-\hat p)}{n}}}

And replacing we got:

z= \frac{0.436-0.4}{\sqrt{\frac{0.436*(1-0.436)}{700}}}= 1.92

Step-by-step explanation:

For this case we have the following info:

n =700 represent the sample size

X= 305 represent the number of employees that earn more than 50000

\hat p=\frac{305}{700}= 0.436

We want to test the following hypothesis:

Nul hyp. p \leq 0.4

Alternative hyp : p>0.4

The statistic for this case would be:

z=\frac{\hat p -p_o}{\sqrt{\frac{\hat p(1-\hat p)}{n}}}

And replacing we got:

z= \frac{0.436-0.4}{\sqrt{\frac{0.436*(1-0.436)}{700}}}= 1.92

And the p value would be given by:

p_v = P(z>1.922)= 0.0274

4 0
3 years ago
A 4 pound bag of cherries costs $12.16. What is the price per ounce?
vfiekz [6]

if 4 pound bag = $ 12.16

1 pound bag = ?

=  \frac{1}{4}  \times 12.6

= $3.15

7 0
3 years ago
Other questions:
  • What percent of 80 is 200?
    7·2 answers
  • Find the product (x-y) (8x+y)
    12·1 answer
  • Find the area of the figure below formed from a triangle and from a rectangle in square millimeters
    9·2 answers
  • Determine the value(s) for which the rational expression f(x)=(?11x+1)/(?30x^2?25x+5) is undefined. If there's more than one val
    11·1 answer
  • Solve and show all work: (−3)^2=
    15·1 answer
  • Debra bought 7 boxes of chocolates. Each box cost $9.55. How much did she spend?
    14·1 answer
  • How do you write 2m + 6 in word phrase
    10·2 answers
  • What is the solution set for
    8·1 answer
  • How many ways are there to place 3 indistinguishable red chips, 3 indistinguishable blue chips, and 3 indistinguishable green ch
    6·1 answer
  • Which equation represents the line that contains the point ( 7 , − 1 ) ( 7 , − 1 ) and is parallel to the line represented by 3
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!