Answer:
Coefficient
Explanation:
I am not that sure, but just wanted to help.
<span>The answer is 4. The molecules of each material entice each other over dispersion (London) intermolecular forces. Whether a substance is a solid, liquid, or gas hinge on the stability between the kinetic energies of the molecules and their intermolecular magnetisms. In fluorine, the electrons are firmly apprehended to the nuclei. The electrons have slight accidental to stroll to one side of the molecule, so the London dispersion powers are comparatively weak. As we go from fluorine to iodine, the electrons are far from the nuclei so the electron exhausts can more effortlessly misrepresent. The London dispersion forces developed to be increasingly stronger.</span>
Answer:
C. An electron has a high probability of being in certain regions.
Explanation:
In the electron cloud model, there are no electron-orbits around the nucleus but a cloud. This cloud has various densities with respect to distance from the nucleus. The most dense region of the cloud (which is the region close to the nucleus) is where electrons has the highest probability of existence.
The model explains that an electron a greater chance of being in the region closer to the nucleus. Thus, an electron has a high probability of being in certain region of the cloud about the central nucleus. And an electrostatic force exists between the nucleus and the electrons.
1 Oz is 28.3495 grams
hope this helps!