Answer:
According to Coulomb’s law, the Ca and Se ions have 4 times the attractive force (2+ × 2-) than that of the K and Br ions (1+ × 1-).
Explanation:
From Coulomb's law, the attractive force between calcium and selenium ions is four times the attractive force between potassium and bromide ions.
This has something to do with size and magnitude of charge. Calcium ions and selenide ions are smaller and both carry greater charge magnitude than potassium and bromide ions. This paves way for greater electrostatic attraction between them when the distance of the charges apart is minimal. Hence a greater lattice energy.
Because when the orange frog eats the red fly the dye that make the fly red turns the frog red very slowly
The greatest amount of AB would be produced if the equilibrium constant of the reaction is equal to . Hence, option D is correct.
<h3>What is an equilibrium constant?</h3>
A number that expresses the relationship between the amounts of products and reactants present at equilibrium in a reversible chemical reaction at a given temperature.
The equilibrium constant expression is a mathematical relationship that shows how the concentrations of the products vary with the concentration of the reactants.
If the value of K is greater than 1, the products in the reaction are favoured. If the value of K is less than 1, the reactants in the reaction are favoured.
Hence, option D is correct.
Learn more about the equilibrium constant here:
brainly.com/question/10038290
#SPJ1
Answer: Compounds.
Explanation:
Compounds are formed when an unstable element combines with other elements, they do this by sharing electrons within their outmost shell. Compounds forms when there is a chemical bonding between two or more elements. Examples of compounds includes carbon dioxide (C, O) water (H and O), Sodium chloride (Na, Cl), methane, etc.