Answer:
b- The heat capacity ratio increases but output temperature don’t change
Explanation:
The heat capacity is the amount of energy required to raise the temperature of a body, by 1 degree. On the other hand, the specific heat capacity is the amount of heat required to raise the temperature of a of unit mass of a material by 1 degree.
Heat capacity is an extensive property meaning its value depends on the amount of material. Specific heat capacity is found by dividing heat capacity by the mass of the sample, thus making it independent of the amount (intensive property). So if the specific heat capacity increases and the mass of the sample remains the same, the heat capacity must increase too. Because of that options c and d that say that heat capacity reamins same are INCORRECT.
On the other hand, in which has to be with options a and b both say that the heat capacity increases which is correct, but about the output temperatures what happens is that if we increase the specific heat capacity of both fluids that are involved in a process of heat exchange in the same value, the value of the output temperatures do not change so only option a is CORRECT.
The molar mass<span> is the </span>mass<span> of a chemical element or a chemical compound (g) divided by the amount of substance (mol).
Hope this helps!</span>
Answer:
0.488atm = Pressure Kr
Explanation:
The total pressure in a mixture of gases could be defined as the sum of the partial pressures of a mixture. For the mixture of gases in the problem:
Total pressure = Pressure He + Pressure Ar + Pressure Ne + Pressure Xe + Pressure Kr
Converting the total pressure to atm:
1252.5mm Hg * (1atm / 760 mmHg) = 1.648 atm
Replacing:
1.648atm = 0.32atm + 0.21atm + 0.44atm + 0.19atm + Pressure Kr
<h3>0.488atm = Pressure Kr</h3>
<u>Answer:</u> The volume of water required is 398 mL
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

We are given:
Mass of solute (manganese (II) nitrate tetrahydrate) = 16 g
Molar mass of manganese (II) nitrate tetrahydrate = 251 g/mol
Molarity of solution = 0.16 M
Putting values in above equation, we get:

Hence, the volume of water required is 398 mL