Answer:
<h2>YES. These points are collinear.</h2>
Step-by-step explanation:
If three points are collinear, then the slopes are the same.
The formula of a slope:
![m=\dfrac{y_2-y_1}{x_2-x_1}](https://tex.z-dn.net/?f=m%3D%5Cdfrac%7By_2-y_1%7D%7Bx_2-x_1%7D)
For (0, -10) and (-3, -13):
![m=\dfrac{-13-(-10)}{-3-0}=\dfrac{-13+10}{-3}=\dfrac{-3}{-3}=1](https://tex.z-dn.net/?f=m%3D%5Cdfrac%7B-13-%28-10%29%7D%7B-3-0%7D%3D%5Cdfrac%7B-13%2B10%7D%7B-3%7D%3D%5Cdfrac%7B-3%7D%7B-3%7D%3D1)
For (-3, -13) and (2, -8):
![m=\dfrac{-8-(-13)}{2-(-3)}=\dfrac{-8+13}{2+3}=\dfrac{5}{5}=1](https://tex.z-dn.net/?f=m%3D%5Cdfrac%7B-8-%28-13%29%7D%7B2-%28-3%29%7D%3D%5Cdfrac%7B-8%2B13%7D%7B2%2B3%7D%3D%5Cdfrac%7B5%7D%7B5%7D%3D1)
We can check the last pair (0, -10) and (2, -8):
![m=\dfrac{-8-(-10)}{2-0}=\dfrac{-8+10}{2}=\dfrac{2}{2}=1](https://tex.z-dn.net/?f=m%3D%5Cdfrac%7B-8-%28-10%29%7D%7B2-0%7D%3D%5Cdfrac%7B-8%2B10%7D%7B2%7D%3D%5Cdfrac%7B2%7D%7B2%7D%3D1)