1/6^b17 i hopes this is right
The volume of a sphere is 4/3 x π x (diameter / 2)3, where (diameter / 2) is the radius of the sphere (d = 2 x r), so another way to write it is 4/3 x π x radius3. Visual on the figure below:
Making this sphere's volume 904.778684 yd3 and its cubic yards is 1,183.4.
That’s not enough information to say how long he could do it. He could go slower or faster than her but by how much if so. So it’s not enough info.
The total cost for utilities last month is 353,571.43.
<h3>What is the total cost for utilities last month?</h3>
The total cost for utilities last month can be determined by multiplying the volume of the stadium by the cost per cubic foot.
The volume of the stadium can be determined by using the formula for the volume of a hemisphere.
Volume of a hemisphere = Volume of a hemisphere = (2/3) x (n) x (r^3)
n = 22/7
r = radius
2/3 x 22/7 x 150³ = 7071,428.57
The total cost for utilities last month = 7071,428.57 x 0.05 = 353,571.43
To learn more about volume, please check: brainly.com/question/13705125
Answer:

Step-by-step explanation:
Given: 
To convert: the given sum into product
Solution:
Use formula: 
![cosx + cos3x + cos5x + cos7x=2\cos \left ( \frac{x+3x}{2} \right )\cos \left ( \frac{x-3x}{2} \right )+2\cos \left ( \frac{5x+7x}{2} \right )\cos \left ( \frac{5x-7x}{2} \right )\\=2\cos (2x)\cos (-x)+2\cos (6x)\cos (-x)\\=2\cos (2x)\cos (x)+2\cos (6x)\cos (x)\\=2\cos x\left [ \cos (2x)+\cos (6x) \right ]](https://tex.z-dn.net/?f=cosx%20%2B%20cos3x%20%2B%20cos5x%20%2B%20cos7x%3D2%5Ccos%20%5Cleft%20%28%20%5Cfrac%7Bx%2B3x%7D%7B2%7D%20%5Cright%20%29%5Ccos%20%5Cleft%20%28%20%5Cfrac%7Bx-3x%7D%7B2%7D%20%5Cright%20%29%2B2%5Ccos%20%5Cleft%20%28%20%5Cfrac%7B5x%2B7x%7D%7B2%7D%20%5Cright%20%29%5Ccos%20%5Cleft%20%28%20%5Cfrac%7B5x-7x%7D%7B2%7D%20%5Cright%20%29%5C%5C%3D2%5Ccos%20%282x%29%5Ccos%20%28-x%29%2B2%5Ccos%20%286x%29%5Ccos%20%28-x%29%5C%5C%3D2%5Ccos%20%282x%29%5Ccos%20%28x%29%2B2%5Ccos%20%286x%29%5Ccos%20%28x%29%5C%5C%3D2%5Ccos%20x%5Cleft%20%5B%20%5Ccos%20%282x%29%2B%5Ccos%20%286x%29%20%5Cright%20%5D)
![cosx + cos3x + cos5x + cos7x=2\cos \left ( \frac{x+3x}{2} \right )\cos \left ( \frac{x-3x}{2} \right )+2\cos \left ( \frac{5x+7x}{2} \right )\cos \left ( \frac{5x-7x}{2} \right )\\=2\cos x\left [ \cos (2x)+\cos (6x) \right ]\\=2\cos x\left [2 \cos \left ( \frac{2x+6x}{2} \right )\cos \left ( \frac{2x-6x}{2} \right ) \right ]\\=2\cos x\left [ 2\cos (4x) \cos (-2x) \right ]\\=4\cos x\cos (4x)\cos (2x)](https://tex.z-dn.net/?f=cosx%20%2B%20cos3x%20%2B%20cos5x%20%2B%20cos7x%3D2%5Ccos%20%5Cleft%20%28%20%5Cfrac%7Bx%2B3x%7D%7B2%7D%20%5Cright%20%29%5Ccos%20%5Cleft%20%28%20%5Cfrac%7Bx-3x%7D%7B2%7D%20%5Cright%20%29%2B2%5Ccos%20%5Cleft%20%28%20%5Cfrac%7B5x%2B7x%7D%7B2%7D%20%5Cright%20%29%5Ccos%20%5Cleft%20%28%20%5Cfrac%7B5x-7x%7D%7B2%7D%20%5Cright%20%29%5C%5C%3D2%5Ccos%20x%5Cleft%20%5B%20%5Ccos%20%282x%29%2B%5Ccos%20%286x%29%20%5Cright%20%5D%5C%5C%3D2%5Ccos%20x%5Cleft%20%5B2%20%5Ccos%20%5Cleft%20%28%20%5Cfrac%7B2x%2B6x%7D%7B2%7D%20%5Cright%20%29%5Ccos%20%5Cleft%20%28%20%5Cfrac%7B2x-6x%7D%7B2%7D%20%5Cright%20%29%20%5Cright%20%5D%5C%5C%3D2%5Ccos%20x%5Cleft%20%5B%202%5Ccos%20%284x%29%20%5Ccos%20%28-2x%29%20%5Cright%20%5D%5C%5C%3D4%5Ccos%20x%5Ccos%20%284x%29%5Ccos%20%282x%29)