Answer:
Interval for the function has local minimum of 0 is [2,4].
Step-by-step explanation:
You need to find the local minimum of 0 in the given function's graph.
In mathematics, local minimum is a point on a graph whose value is less than all other points near it.
See that, graph value 0 is lie on the x = 3 and in interval x = 2 to x = 4
So, final answer is :
Interval for the function has local minimum of 0 is [2,4].That's the final answer.
hope it helps
Answer:
311.41 degrees
Step-by-step explanation:
If 4 sin Ф = -3 and Ф is between 0 and 360 degrees, then we conclude that Ф must be either in Quadrant III or Quadrant IV (because the sine is negative).
Let's assume we're in Quadrant IV. Then sin Ф = opp / hyp = -3/4; that is, the opp side is negative and has length 3, and the hypo is positive 4.
According to the Pythagorean Theorem, (-3)^2 + x^2 = 4^2, or,
x^2 = 16 - 9 = 7.
Then x is either √7 or -√7.
To find the angle Ф, use the inverse sine function:
Ф = arcsin (-3/4). Using a calculator we get the angle -40.59 degrees, which corresponds to (360 degrees - 40.59 degrees), or 311.41 degrees. We can check this by finding the sine of 311.41 degrees; the result is -0.75, which matches "If 4sintheta = -3."
Nearest whole number is 53
If it were 53 point any decimal 5 or up it would be 54.
Hope this helps darling
Rotational, horizontal, and vertical.
<em>(</em><em>2</em><em>7</em><em>)</em><em>^</em><em>3</em><em>+</em><em>(</em><em>-</em><em>1</em><em>5</em><em>)</em><em>+</em><em>(</em><em>1</em><em>2</em><em>)</em><em>^</em><em>3</em>
<em>=</em><em> </em><em>2</em><em>7</em><em>×</em><em>2</em><em>7</em><em>×</em><em>2</em><em>7</em><em>-</em><em>1</em><em>5</em><em>+</em><em>1</em><em>2</em><em>×</em><em>1</em><em>2</em><em>×</em><em>1</em><em>2</em>
= <em>1</em><em>9</em><em>6</em><em>8</em><em>3</em><em>-</em><em>1</em><em>5</em><em>+</em><em>1</em><em>7</em><em>2</em><em>8</em>
<em>=</em><em> </em><em>2</em><em>1</em><em>3</em><em>9</em><em>6</em><em> </em><em> </em><em>answer</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>