Answer:
Buffer 1.
Explanation:
Ammonia is a weak base. It acts like a Bronsted-Lowry Base when it reacts with hydrogen ions.
.
gains one hydrogen ion to produce the ammonium ion
. In other words,
is the conjugate acid of the weak base
.
Both buffer 1 and 2 include
- the weak base ammonia
, and - the conjugate acid of the weak base
.
The ammonia
in the solution will react with hydrogen ions as they are added to the solution:
.
There are more
in the buffer 1 than in buffer 2. It will take more strong acid to react with the majority of
in the solution. Conversely, the pH of buffer 1 will be more steady than that in buffer 2 when the same amount of acid has been added.
Answer:
Explanation:
The formula for sodium is Na. It does not form a molecule in some way.
1 mol Na = 6.02*10^23 atoms
3.91 mol = x Cross multiply
x = 3.91 * 6.02 * 10^23
x = 23.65 * 10^23
x = 2.365 * 10^24
Scientific notation is always expressed as a number 1 ≤ x < 10
1.53 moles of Fe is your solution hope it helps!
Answer:
have a great time at y avg be have a great time at all today I was going to answer restroom for spring break is over and over again and again and again and again and again and again your hhhha
Answer:
3 (NH4)2SO4(aq) + 2 Al(NO3)3(aq) → 6 NH4NO3(aq) + Al2(SO4)3(aq)
Explanation:
In solubility rules, all ammonium and nitrates ions are solubles and all sulfates are soluble except the sulfates that are produced with Ca²⁺, Sr²⁺, Ba²⁺, Ag⁺ and Pb²⁺. That means the NH4NO3 and the Al2(SO4)3 produced are both <em>soluble and no precipitate is predicted. </em>
The reaction is:
<h3>3 (NH4)2SO4(aq) + 2 Al(NO3)3(aq) → 6 NH4NO3(aq) + Al2(SO4)3(aq)</h3>