Answer:
Missing Details, Most Are Approximations,Simplicity
Explanation:
I just had this question
Answer:
The hiker has to climb 941.26 to ''work off'' the calories.
Explanation:
Let's first find out how much energy the hiker gets from 150 food calories.
This is:
Energy = 150 * 4186
Energy = 627.9 kJ
To burn all of this off, we set it equal to the gravitational potential energy, and then solve for the height.
This is:
Gravitational Potential Energy (G.P.E) = 629700
G.P.E = mass * gravity * height
Thus,
mass * gravity * height = 629700
68 * 9.81 * height = 629700
height = 941.26 meters
Answer:
x = 2
Explanation:
if it was -7 = the square root of both 2x-9 together, it would be false.
if it was square root of just 2x in the equation, the answer is:
x = 2
°°°°°°°°°
-7 = √2x - 9
-√2x = -9 + 7
√-2x = -2
√2x = 2
2x = 4
x = 2
Answer:
Efficiency = 10.2 %
Explanation:
Given the following data;
Mass = 70 kg
Height = 50 m
Velocity = 10 m/s
We know that acceleration due to gravity is equal to 9.8 m/s².
To find the efficiency of energy conversion from potential to kinetic;
First of all, we would determine the potential energy;
P.E = mgh
P.E = 70 * 9.8 * 50
P.E = 34300 J
For the kinetic energy;
K.E = ½mv²
K.E = ½ * 70 * 10²
K.E = 35 * 100
K.E = 3500
Therefore, Input energy, I = 34300 J
Output energy, O = 3500 J
Next, we find the efficiency;
Efficiency = O/I * 100
Substituting into the formula, we have;
Efficiency = 3500/34300 * 100
Efficiency = 0.1020 * 100
Efficiency = 10.2 %
<h2>Right answer: Sea breeze </h2>
The sea breeze is formed because during the day the surface of the land on the coast tends to warm up before and more than the surface of the sea. This difference in temperature between these two air masses means that on a sunny day the land warms up much more than the ocean causing a small area of low pressure.
Then, the air rises as the land warms it and the colder air located on the surface of the sea forms a high pressure zone that makes this air mass tend to occupy the space left by the warmer air that has ascended on the coast. Therefore, the mass of air of a high pressure on the ocean always tends to move towards the zone of low pressure located on the coast.
It is important to note that the <u>sea breeze blows perpendicularly to the coast</u> and that the best breezes are formed in the spring and summer seasons because during the spring the water temperature is still cold and during the summer the sun produces high temperatures over the land in the coast.
<h2>So, <u>
the greater the temperature contrast </u>
between the land and the sea, <u>
the greater the force of the wind generated</u>
.</h2>