1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irinina [24]
3 years ago
13

To practice Problem-Solving Strategy 17.1 for wave interference problems. Two loudspeakers are placed side by side a distance d

= 4.00 m apart. A listener observes maximum constructive interference while standing in front of the loudspeakers, equidistant from both of them. The distance from the listener to the point halfway between the speakers is l = 5.00 m . One of the loudspeakers is then moved directly away from the other. Once the speaker is moved a distance r = 60.0 cm from its original position, the listener, who is not moving, observes destructive interference for the first time. Find the speed of sound v in the air if both speakers emit a tone of frequency 700 Hz .

Physics
1 answer:
Nimfa-mama [501]3 years ago
7 0

Complete Question

The compete question is shown on the first uploaded question

Answer:

The speed is  v  =  350 \  m/s  

Explanation:

From the question we are told that

   The  distance of separation is  d =  4.00 m  

  The distance of the listener to the center between the speakers is  I =  5.00 m

  The change in the distance of the speaker is by k  =  60 cm  =  0.6 \  m

    The frequency of both speakers is f =  700 \  Hz

Generally the distance of the listener to the first speaker is mathematically represented as

       L_1  =  \sqrt{l^2 + [\frac{d}{2} ]^2}

       L_1  =  \sqrt{5^2 + [\frac{4}{2} ]^2}

        L_1  =   5.39 \  m

Generally the distance of the listener to second speaker at its new position is  

          L_2  =  \sqrt{l^2 + [\frac{d}{2} ]^2 + k}

       L_2  =  \sqrt{5^2 + [\frac{4}{2} ]^2 + 0.6}

        L_2  =   5.64  \  m  

Generally the path difference between the speakers is mathematically represented as

        pD  = L_2 - L_1  =  \frac{n  *  \lambda}{2}

Here \lambda is the wavelength which is mathematically represented as

         \lambda =  \frac{v}{f}

=>    L_2 - L_1  =  \frac{n  *  \frac{v}{f}}{2}

=>    L_2 - L_1  =  \frac{n  *  v}{2f}  

=>    L_2 - L_1  =  \frac{n  *  v}{2f}  

Here n is the order of the maxima with  value of  n =  1  this because we are considering two adjacent waves

=>    5.64 - 5.39   =  \frac{1  *  v}{2*700}      

=>    v  =  350 \  m/s  

You might be interested in
PLZ HELP ME FAST A relationship between two variables is called:
Irina18 [472]

Answer:

B- Correlation

Explanation:

6 0
2 years ago
Read 2 more answers
Consider a car travelling at 60 km/hr. If the radius of a tire is 25 cm, calculate the angular speed of a point on the outer edg
vlabodo [156]

To solve this problem it is necessary to apply the concepts given in the kinematic equations of movement description.

From the perspective of angular movement, we find the relationship with the tangential movement of velocity through

\omega = \frac{v}{R}

Where,

\omega =Angular velocity

v = Lineal Velocity

R = Radius

At the same time we know that the acceleration is given as the change of speed in a fraction of the time, that is

\alpha = \frac{\omega}{t}

Where

\alpha =Angular acceleration

\omega = Angular velocity

t = Time

Our values are

v = 60\frac{km}{h} (\frac{1h}{3600s})(\frac{1000m}{1km})

v = 16.67m/s

r = 0.25m

t=6s

Replacing at the previous equation we have that the angular velocity is

\omega = \frac{v}{R}

\omega = \frac{ 16.67}{0.25}

\omega = 66.67rad/s

Therefore the angular speed of a point on the outer edge of the tires is 66.67rad/s

At the same time the angular acceleration would be

\alpha = \frac{\omega}{t}

\alpha = \frac{66.67}{6}

\alpha = 11.11rad/s^2

Therefore the angular acceleration of a point on the outer edge of the tires is 11.11rad/s^2

5 0
3 years ago
Ety ratio
horrorfan [7]

3) The work done is D. zero

4) The kinetic energy is B. 180 J

5) The potential energy is A. 120 J

6) The work done depends on B. position

7) The example of non-renewable energy is C. coal

8) The power expended is 3\cdot 10^4 W

9) The efficiency is A. 100%

10) The velocity ratio is 5

Explanation:

3)

The work done by a force acting an object is given by:

W=Fd cos \theta

where :

F is the magnitude of the force

d is the displacement

\theta is the angle between the direction of the force and the displacement

When the force is applied perpendicular to the direction of motion,

\theta=90^{\circ}

Therefore, the work done is:

W=Fd(cos 90^{\circ})=0

4)

The kinetic energy of a body is given by

K=\frac{1}{2}mv^2

where

m is the mass of the body

v is its speed

For the girl in this problem, we have

m = 40 kg

v = 3 m/s

Therefore her kinetic energy is

K=\frac{1}{2}(40)(3)^2=180 J

5)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g=10 m/s^2 is the acceleration of gravity

h is the heigth of the object relative to the ground

For the ball in this problem,

m = 0.4 kg

h = 30 m

So, the potential energy is

PE=(0.4)(10)(30)=120 J

6)

A conservative field is a field for which the work done by the field on an object does not depend on the path taken, but only on the initial and final position of the object.

Gravitational and electric fields are examples of conservative fields. In fact:

  • When an object is pulled down by gravity (free fall), the work done by the gravitational field only depends on the change in height \Delta h between the two points, not on the path taken during the fall
  • When an electric charge is pushed by the electric field, the work done by the field depends only on the initial and final position of the charge in the field

For any conservative field, it is possible to define a "potential" function, which represents the energy per unit mass/charge, and depends only on the position of the object.

7.

  • Non-renewable energy sources are sources of energy whose rate of consumption is faster than the rate at which they are re-created. Examples of non-renewable sources are coal, oil, natural gas. These energy sources are consumed at a fast rate, while they take million of years to regenerate, so at the current rate they will eventually run out.
  • Renewable energy sources are sources of energy that replenish at faster rate than the rate at which it is consumed. Examples of renewable sources are solar energy, wind, hydroelectric power.

Therefore, the example of non-renewable energy in this case is

C. Coal

8.

For an object pushed by a force F and moving at a constant velocity v, the power expended is given by

P=Fv

where F is the force and v is the velocity.

for the rocket in this problem, we have:

F = 10 N is the force propelling the rocket

v = 3000 m/s is its velocity

Substituting into the equation, we find the power expended:

P=(10)(3000)=30,000 W = 3\cdot 10^4 W

9.

The efficiency of a machine is given by

\eta = \frac{W_{out}}{W_{in}}

where

W_{in} is the energy in input to the machine

W_{out} is the useful work in output from the machine

For a real machine, the useful work in output is always lower than the energy input, because part of the energy is "wasted" and converted into thermal energy due to the presence of internal frictions. However, for an ideal machine, all the input energy is converted into useful work, so

W_{out}=W_{in}

And therefore the efficiency is

\eta=1

which means 100%.

10.

The velocity ratio of a block and tackle system is the ratio between the distance moved by the effort and the distance moved by the load.

VR=\frac{d_{eff}}{d_{load}}

In a block and tackle system, the velocity ratio is also equal to the number of pulleys in the system.

For the system in the problem, there are 5 pulleys: therefore, this means that when the effort moves 5 metres, the load moves 1 metres, therefore the velocity ratio is

VR=\frac{5}{1}=5

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

5 0
4 years ago
Which parts of the electric circuit considered as fuse ​
Marizza181 [45]

Answer:

Rewirable or Kit – Kat Type Fuses are a type of Low Voltage (LV) Fuses. They are most commonly used in house wiring, small industries and other small current applications. Rewirable Fuses consists of two main parts: a Fuse Base, which contains the in and out terminal, and a Fuse Carrier, which holds the Fuse Element.

3 0
3 years ago
Read 2 more answers
Emboldened by the success of their late night keg pull in Exercise 61 above, our intrepid young scholars have decided to pay hom
alexdok [17]

Answer is answer

XD                                ssssss

5 0
3 years ago
Other questions:
  • Calculate the kinetic energy of a 1500 kg car moving at 42 km/hr.
    5·1 answer
  • Please help me with 1 and 2
    6·1 answer
  • When boating in shallow areas or seagrass beds, you see a mud trail in your wake where your boat has churned up the bottom. If y
    5·1 answer
  • Can you describe the clothes washing system inside a washing machine and explain how it is an embedded system ?
    6·2 answers
  • Two or more different monomers will link to form a
    8·1 answer
  • A 27.4 kg dog is running northward at 2.19 m/s , while a 7.19 kg cat is running eastward at 2.78 m/s . Their 75.7 kg owner has t
    10·1 answer
  • A 2.0 cm thick brass plate (k_r = 105 W/K-m) is sealed to a glass sheet (kg = 0.80 W/K m), and both have the same area. The expo
    11·1 answer
  • How is the axe an example of a wedge (think about simple machines)?
    7·1 answer
  • A car travels up a hill at a constant speed of 44 km/h and returns down the hill at a constant speed of 74 km/h. Calculate the a
    7·1 answer
  • 5. Your friend claims that the Moon’s repeated orbit around Earth causes the cycle of the Moon’s phases.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!