The question is incomplete. The complete question is:
The half-life for the decay of carbon-14 is 5.73x10^3 years. Suppose the activity due to the radioactive decay of the carbon-14 in a tiny sample of an artifact made of woodfrom an archeological dig is measured to be 2.8x10^3 Bq. The activity in a similiar-sized sample of fresh wood is measured to be 3.0x10^3 Bq. Calculate the age of the artifact. Round your answer to 2 significant digits.
Answer:
570 years
Explanation:
The activity of the fresh sample is taken as the initial activity of the wood sample while the activity measured at a time t is the present activity of the wood artifact. The time taken for the wood to attain its current activity can be calculated from the formula shown in the image attached. The activity at a time t must always be less than the activity of a fresh wood sample. Detailed solution is found in the image attached.
Answer:
33.3 g AlCl3
Explanation:
First:
You need a balanced chem equation.
2Al + 3Cl2 --->2AlCl3
So now you use this to set up train track method which helps us cancel out the units. Also we dont care about chlorine because it is excess.
6.73g Al x 1mol Al/26.98g Al x 2mol AlCl3/2molAl x 133.34g AlCl3/1molAlCl3
= 33.3 g AlCl3
Answer:
An atom of neon-20 has one fewer proton and two fewer neutrons than an atom of sodium-23.
Explanation:
Neon - 20 and Sodium - 23
Neon - 20
Protons = 10
Neutrons = 10
Sodium - 23
Protons = 11
Neutrons = 12
With the information above and checking the options;
An atom of neon-20 has one fewer proton and two fewer neutrons than an atom of sodium-23.
This option is correct.