Answer:
8(x+9)=7
comment if you need anything else like solving for x
Answer:
Entries of I^k are are also identity elements.
Step-by-step explanation:
a) For the 2×2 identity matrix I, show that I² =I
![I^{2}=\left[\begin{array}{cc}1&0\\0&1\end{array}\right] \times \left[\begin{array}{cc}1&0\\0&1\end{array}\right] \\\\=\left[\begin{array}{cc}1\times 1+0\times 0&1\times 0+0\times 1\\0\times 1+1\times 0&0\times 0+1\times1\end{array}\right] \\\\=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=I%5E%7B2%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%5Ctimes%201%2B0%5Ctimes%200%261%5Ctimes%200%2B0%5Ctimes%201%5C%5C0%5Ctimes%201%2B1%5Ctimes%200%260%5Ctimes%200%2B1%5Ctimes1%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
Hence proved I² =I
b) For the n×n identity matrix I, show that I² =I
n×n identity matrix is as shown in figure
Elements of identity matrix are

As square of 1 is equal to 1 so for n×n identity matrix I, I² =I
(c) what do you think the enteries of Ik are?
As mentioned above

Any power of 1 is equal to 1 so kth power of 1 is also 1. According to this Ik=I
Answer:
44 cm
Step-by-step explanation:
So, it is asking what the bigger piece of the 60 cm board is. First you can divide it into two even pieces. That makes each piece 30 cm. but, it wants one of the two 14 cm bigger, right? So, now your going to add 14 cm to 30 cm, giving you 44 cm. But, if you do that then you will have to subtract 14 cm from the other board. That leaves you with the bigger board is 44 cm, and the smaller one is 16 cm.
<span>For example
let there be 100 students
so the number of girls=40
20% of girls=20%of40=20*40/100=8 wear glasses
Which means 8 out of 100 students wear glasses
So 8%students wear glasses</span>
Answer:
Step-by-step explanation:
A anything below 5.7