Here, we are required to determine the volume of the earth which is 1.08326 × 10¹² km³ in liters.
<em>The volume of the earth is approximately</em>,
, 1.08326 × 10²⁴ liters
By conversion factors;
- <em>1dm³ = 1liter</em>
- However; <em>1km = 10000dm = 10⁴ </em><em>dm</em>
- Therefore, 1km³ = (10⁴)³ dm³.
Consequently, 1km³ = 10¹²dm³ = 10¹²liters.
The conversion factor from 1km³ to liters is therefore, c.f = 10¹²liters/km³
Therefore, the volume of the earth which is approximately, 1.08326 × 10¹² km³ can be expressed in liters as;
<em>1.08326 × 10¹² km³ × 10¹²liters/km³ </em>
The volume of the earth is approximately,
1.08326 × 10²⁴ liters.
Read more:
brainly.com/question/16814684
<u>Answer:</u> The half life of the reaction is 1190.7 seconds
<u>Explanation:</u>
The equation used to calculate rate constant from given half life for first order kinetics:

where,
k = rate constant of the reaction = 
= half life of the reaction = ?
Putting values in above equation, we get:

Hence, the half life of the reaction is 1190.7 seconds
You start by diving each quantity given by the atomic wight of each element:
Phosphorus (P) 
Hydrogen (H) 
Then you divide by the lowest number:
for phosphorus
for hydrogen
So the empirical formula will be:

Answer: 483 mL of the cleaning solution are used to clean hospital equipment
Explanation:
The question requires us to calculate the volume, in mL, of solution is used to clean hospital equipment, given that 415g of this solution are used and the specific gravity of the solution is 0.860.
Measurements > Density
Specific gravity is defined as the ratio between the density of a given substance to the density of a reference material, such as water:

The density of a substance is defined as the ratio between the mass and the volume of this substance:

Considering the reference substance as water and its density as 1.00 g/mL, we can determine the density of the substance which specific gravity is 0.860:

Thus, taking water as the reference substance, we can say that the density of the cleaning solution is 0.860 g/mL.
Now that we know the density of the cleaning solution (0.860 g/mL) and the mass of solution that is used to clean hospital equipment (415g), we can calculate the volume of solution that is used to clean the equipment:

Therefore, 483 mL of the cleaning solution are used to clean hospital equipment.