Answer:
Explanation:
There are 3 types of plastids :-
1) Chloroplasts:- The green plastids which contain chlorophyll pigments for photosynthesis.
2) Chromoplasts:-The coloured plastids for pigment synthesis and storage.
3) Leucoplasts:- The colourless plastids for monoterpene synthesis found in non- photosynthetic parts of the plants.
They are of three types:-
a) Amyloplasts- stores starch.
b) Proteinoplasts- stores proteins.
c) Elaioplasts- stores fats and oils.
Answer: Hmmmmm that's crazy....
There are a couple of equations one could use for this type of problem, but I find the following to be the easiest to use and to understand.
Fraction remaining (FR) = 0.5n
n = number of half lives that have elapsed
In this problem, we need to find n and are given the FR, which is 1.56% or 0.0156 (as a fraction).
0.0156 = 0.5n
log 0.0156 = n log 0.5
-1.81 = -0.301 n
n = 6.0 half lives have elapsed
Explanation:
Just wanted to help. Hopefully it's correct wouldn't want to waster your time ;)
Answer:
1.98x10⁻¹² kg
Explanation:
The <em>energy of a photon</em> is given by:
h is Planck's constant, 6.626x10⁻³⁴ J·s
c is the speed of light, 3x10⁸ m/s
and λ is the wavelenght, 671 nm (or 6.71x10⁻⁷m)
- E = 6.626x10⁻³⁴ J·s * 3x10⁸ m/s ÷ 6.71x10⁻⁷m = 2.96x10⁻¹⁹ J
Now we multiply that value by <em>Avogadro's number</em>, to <u>calculate the energy of 1 mol of such protons</u>:
- 1 mol = 6.023x10²³ photons
- 2.96x10⁻¹⁹ J * 6.023x10²³ = 1.78x10⁵ J
Finally we <u>calculate the mass equivalence</u> using the equation:
- m = 1.78x10⁵ J / (3x10⁸ m/s)² = 1.98x10⁻¹² kg
Answer:

Explanation:
Hello!
In this case, since the chemical reaction between copper and nitric acid is:

By starting with 0.80 g of copper metal (molar mass = 63.54 g/mol) and considering the 1:1 mole ratio between copper and copper (II) nitrate (molar mass = 187.56 g/mol) we can compute that mass via stoichiometry as shown below:

However, the real reaction between copper and nitric acid releases nitrogen oxide, yet it does not modify the calculations since the 1:1 mole ratio is still there:

Best regards!