Answer:
(e) csc x − cot x − ln(1 + cos x) + C
(c) 0
Step-by-step explanation:
(e) ∫ (1 + sin x) / (1 + cos x) dx
Split the integral.
∫ 1 / (1 + cos x) dx + ∫ sin x / (1 + cos x) dx
Multiply top and bottom of first integral by the conjugate, 1 − cos x.
∫ (1 − cos x) / (1 − cos²x) dx + ∫ sin x / (1 + cos x) dx
Pythagorean identity.
∫ (1 − cos x) / (sin²x) dx + ∫ sin x / (1 + cos x) dx
Divide.
∫ (csc²x − cot x csc x) dx + ∫ sin x / (1 + cos x) dx
Integrate.
csc x − cot x − ln(1 + cos x) + C
(c) ∫₋₇⁷ erf(x) dx
= ∫₋₇⁰ erf(x) dx + ∫₀⁷ erf(x) dx
The error function is odd (erf(-x) = -erf(x)), so:
= -∫₀⁷ erf(x) dx + ∫₀⁷ erf(x) dx
= 0
Brainliest? The outcome of the second selection is not affected in any way by the outcome of the first selection. Therefore the events are independent.
Answer:
0.1x+0.04y=4,000
x+y=352
Step-by-step explanation:
Answer:
A,D,E
Step-by-step explanation:
Edge 2020
First add the number of total larges ordered 22+5=27 then divide 22/27=.814 to make the answer a percent times by 100. .814x100=81.5% to double check you can multiply .814 by number of larges and should get number of hot larges ordered. .814x27=22