A) His wagon will accelerate more.
B) His wagon will accelerate less. Both parts are answered by F=ma. Mass is inversely proportional to acceleration, and force is directly proportional to acceleration.
The answer is 2.63m/s^2! You use the formula F=ma, 112 = 42.6(a), a= 2.63m/s^2.
Answer:
The period of a pendulum does not depend on the mass of the ball, but only on the length of the string. Two pendula with different masses but the same length will have the same period. Two pendula with different lengths will different periods; the pendulum with the longer string will have the longer period.
Explanation:
<h3><u>Question: </u></h3>
The equation for the speed of a satellite in a circular orbit around the Earth depends on mass. Which mass?
a. The mass of the sun
b. The mass of the satellite
c. The mass of the Earth
<h3><u>Answer:</u></h3>
The equation for the speed of a satellite orbiting in a circular path around the earth depends upon the mass of Earth.
Option c
<h3><u>
Explanation:
</u></h3>
Any particular body performing circular motion has a centripetal force in picture. In this case of a satellite revolving in a circular orbit around the earth, the necessary centripetal force is provided by the gravitational force between the satellite and earth. Hence
.
Gravitational force between Earth and Satellite: 
Centripetal force of Satellite :
Where G = Gravitational Constant
= Mass of Earth
= Mass of satellite
R= Radius of satellite’s circular orbit
V = Speed of satellite
Equating
, we get
Speed of Satellite 
Thus the speed of satellite depends only on the mass of Earth.
Answer:
Explanation:
Impulse of a force is measured by force x time or F X t
Impulse also equals change in momentum or
F x t = m v₂ - m v₁
The given case is as follows
in the first case
F x t = mv - o = mv
F = mv / t
in the second case
F₁ x 4 t = mv
F₁ = 1/4 x mv /t
F₁ = F / 4
option a) is correct .
iii )
In the last case
F₂ X t = m v/2 -0
F₂ = 1/2 x mv / t
= 1/2 x F
F₂ = F/2
Option e ) is correct.