1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex_Xolod [135]
4 years ago
5

7.For the following questions, use a periodic table and your atomic calculations to find the unknown information about each isot

ope:
You have an neutrally charged isotope with 30 electrons and a mass number of 64. What element is it?

Cu: Copper
Zn: Zinc
P: Phosphorus
Se: Selenium
Physics
1 answer:
Oksana_A [137]4 years ago
4 0
I believe the answer to this is Zinc
You might be interested in
What do you like about science?​
Inessa [10]

Answer:

nngh have

bjruh hjrhhj be rnrnnrnrnnnrnjrjnnnnnnnnrnrn n n and I was nrn

Explanation:

jbbbbbhhhjjnnnnnnnnnnjhvcc

Explanation:

5 0
3 years ago
Helppppppppp plzzzzzz
seropon [69]
I think number 1 is incorrect I believe that answer is D. Number 6 I believe would be B. The rest seem to be correct.
4 0
3 years ago
Read 2 more answers
What charges are needed in the objects to attract both objects?
kvasek [131]

Answer:

both

Explanation:

8 0
3 years ago
Read 2 more answers
Torque can cause the angular momentum vector to rotate in UCM. This motion is called ___________.
emmainna [20.7K]

Torque can cause the angular momentum vector to rotate in UCM. This motion is called _Conservation of Angular momentum__________.

Answer:

Conservation of Angular momentum

Explanation:

The motion of an object in a circular path at constant speed is known as uniform circular motion (UCM). An object in UCM is constantly changing direction, and since velocity is a vector and has direction, you could say that an object undergoing UCM has a constantly changing velocity, even if its speed remains constant.

The law of conservation of angular momentum states that when no external torque acts on an object, no change of angular momentum will occur.

Key Points

When an object is spinning in a closed system and no external torques are applied to it, it will have no change in angular momentum.

The conservation of angular momentum explains the angular acceleration of an ice skater as she brings her arms and legs close to the vertical axis of rotation.

If the net torque is zero, then angular momentum is constant or conserved.

Angular Momentum

The conserved quantity we are investigating is called angular momentum. The symbol for angular momentum is the letter L. Just as linear momentum is conserved when there is no net external forces, angular momentum is constant or conserved when the net torque is zero. We can see this by considering Newton’s 2nd law for rotational motion:

τ→=dL→dt, where  

τ is the torque. For the situation in which the net torque is zero,  

dL→dt=0.

If the change in angular momentum ΔL is zero, then the angular momentum is constant; therefore,

⇒

L  =constant

L=constant (when net τ=0).

This is an expression for the law of conservation of angular momentum.

Example and Implications

An example of conservation of angular momentum is seen in an ice skater executing a spin,  The net torque on her is very close to zero,

because (1) there is relatively little friction between her skates and the ice, and (2) the friction is exerted very close to the pivot point.

Conservation of angular momentum is one of the key conservation laws in physics, along with the conservation laws for energy and (linear) momentum. These laws are applicable even in microscopic domains where quantum mechanics governs; they exist due to inherent symmetries present in nature.

7 0
3 years ago
Two electrodes, separated by a distance d, in a vacuum are maintained at a constant potential difference. An electron, accelerat
Alja [10]

Answer:

Explanation:

Given that, the distance between the electrode is d.

The electron kinetic energy is Ek when the electrode are at distance "d" apart.

So, we want to find the K.E when that are at d/3 distance apart.

K.E = ½mv²

Note: the mass doesn't change, it is only the velocity that change.

Also,

K.E = Work done by the electron

K.E = F × d

K.E = W = ma × d

Let assume that if is constant acceleration

Then, m and a is constant,

Then,

K.E is directly proportional to d

So, as d increase K.E increase and as d decreases K.E decreases.

So,

K.E_1 / d_1 = K.E_2 / d_2

K.E_1 = E_k

d_1 = d

d_2 = d/3

K.E_2 = K.E_1 / d_1 × d_2

K.E_2 = E_k × ⅓d / d

Then,

K.E_2 = ⅓E_k

So, the new kinetic energy is one third of the E_k

7 0
3 years ago
Other questions:
  • What do ocean waves and sound waves have in common?
    7·2 answers
  • A base is a substance that produces hydrogen ions in a water solution
    6·1 answer
  • When a Lunar Module landed on the Moon, it used thrusters to slow its descent to the surface. When other spacecraft are returned
    6·1 answer
  • Thomas needs to move an 80 kg rock, but cannot lift it. He decides to use a
    5·1 answer
  • Which statement best explains the difference between velocity and speed?
    13·2 answers
  • An astronaut landed on a far away planet that has a sea of water. To determine the gravitational acceleration on the planet's su
    5·1 answer
  • 4. What is the amplitude of the waves shown in the diagram below?
    10·1 answer
  • Explain why a ball thrown in space could keep moving forever, while a ball thrown here on Earth will come to a stop.
    11·1 answer
  • A ball rolls off an 8.0 m high building and strikes the ground 5.0 m away from the base of the building. How fast was the ball r
    13·1 answer
  • A uniform metal bar of length 6m and mass 100kg rest with its upper end against a smooth vertical wall and with its lower end on
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!