Answer:
310.53 g of Cu.
Explanation:
The balanced equation for the reaction is given below:
CuSO₄ + Zn —> ZnSO₄ + Cu
Next, we shall determine the mass of CuSO₄ that reacted and the mass Cu produced from the balanced equation. This can be obtained as follow:
Molar mass of CuSO₄ = 63.5 + 32 + (16×4)
= 63.5 + 32 + 64
= 159.5 g/mol
Mass of CuSO₄ from the balanced equation = 1 × 159.5 = 159.5 g
Molar mass of Cu = 63.5 g/mol
Mass of Cu from the balanced equation = 1 × 63.5 = 63.5 g
Summary:
From the balanced equation above,
159.5 g of CuSO₄ reacted to produce 63.5 g of Cu.
Finally, we shall determine the mass of Cu produced by the reaction of 780 g of CuSO₄. This can be obtained as follow:
From the balanced equation above,
159.5 g of CuSO₄ reacted to produce 63.5 g of Cu.
Therefore, 780 g of CuSO₄ will react to produce = (780 × 63.5)/159.5 = 310.53 g of Cu.
Thus, 310.53 g of Cu were obtained from the reaction.
Answer:
25.35%
Explanation:
Again let me restate the the equation of the reaction;
H2O (ℓ) + 2 MnO4 - (aq) + 3 CN- (aq) → 2 MnO2 (s) + 3 CNO- (aq) + 2 OH- (aq)
Amount of potassium permanganate reacted = 10.2/1000 * 0.08035 = 8.1957 * 10^-4 moles
If 2 moles of MnO4 - reacts with 3 moles of CN-
8.1957 * 10^-4 moles of MnO4 - reacts with 8.1957 * 10^-4 * 3/2
= 1.229 * 10^-3 moles of CN-
Mass of CN- reacted = 1.229 * 10^-3 moles of CN- * 26.02 g/mol
= 0.03 g
Hence, percentage of the cyanide = 0.03 g/0.1183 g * 100
= 25.35%
Using a calculator:
(2.568 x 5.8)/4.186 = 3.5581460…
= 3.56 (3sf)
You didn’t specify the correct number of significant figures needed.
Answer:
C.
Explanation:
para sakin letter C ganonn