Answer:
N2H2(aq) + 2OH^-(aq) ----------> N2(g) + 2H2O(l) + 2e
Explanation:
Hydrazine is mostly used in thermal engineering as an anticorrosive agent. Hydrazine can be oxidized in aqueous solution as shown in the equation above. Oxidation has to do with loss of electrons and increase in oxidation number.
The oxidation number of nitrogen in the equation increased from -1 in hydrazine on the lefthand side of the reaction equation to zero in nitrogen on the right hand side of the reaction equation. Two electrons were lost in the process as shown.
Answer:
41.3kJ of heat is absorbed
Explanation:
Based in the reaction:
Fe₃O₄(s) + 4H₂(g) → 3Fe(s) + 4H₂O(g) ΔH = 151kJ
<em>1 mole of Fe3O4 reacts with 4 moles of H₂, 151kJ are absorbed.</em>
63.4g of Fe₃O₄ (Molar mass: 231.533g/mol) are:
63.4g Fe₃O₄ × (1mol / 231.533g) = <em>0.274moles of Fe₃O₄</em>
These are the moles of Fe₃O₄ that react. As 1 mole of Fe₃O₄ in reaction absorb 151kJ, 0.274moles absorb:
0.274moles of Fe₃O₄ × (151kJ / 1 mole Fe₃O₄) =
<h3>41.3kJ of heat is absorbed</h3>
<em />
Quantity of K2S m = 0.105 m
Number of ions i = 2(K) + 1(S) = 3
Freezing point depression constant of water Kf = 1.86
delta T = i x m x Kf = 3 x 0.105 x 1.86 = 0.586
Freezing point = 0 - 0.586 = 0.586 C
Boiling point constant of water Kb = 0.512
delta T = i x m x Kb = 3 x 0.105 x 0.512 = 0.161
Boiling point = 100 + 0.161 = 100.161 C