A contact force is a force in which and object comes in contact with a another object. A non-contact force, is a force is an object applied by another body. (A good example of a non-contact force is gravity)
Answer:
The time taken for the cross to become invisible decreases.
Explanation:
We know that one of the factors affecting the rate of reaction is the concentration of reactants. From the collision theory, we know that the higher the concentration of reactants, the greater the possibility of effective collision between reactants leading ultimately to an increase in the rate of reaction. Increase in the rate of reaction implies that the reaction takes a shorter time to reach completion.
In the case of the reaction shown in the question, the point when the reaction is completed is observed by the time take for the cross mark to become invisible. If we look at the given data closely, we will notice that the volume of acid was held constant, the volume of thiosulphate was increased gradually while the volume of water was decreased accordingly. This implies that the concentration of the reactants was increased. Decreasing the volume of water increases reactant concentration.
As explained above, increase in reactant concentration increases the rate of reaction. Hence, the rate of reaction of the acid and thiosulphate increases as reactant concentration increases and the cross mark becomes invisible faster. This implies that in the last column for time taken for the cross to become invisible, the values of time decreases steadily as concentration of reactants increases.
The chemical elements are arranged in order of increasing atomic number. Answer A.
The de Broglie hypothesis proposed that all particles have wave-like properties, with the wavelength being inversely proportional to the velocity of the particle.
Therefore as the velocity (speed in this question) increases, the wavelength *decreases*.
Answer:
Yes. Example: <u>Sulfur hexafluoride (SF₆) molecule</u>
Explanation:
According to the octet rule, elements tend to form chemical bonds in order to have <u>8 electrons in their valence shell</u> and gain the stable s²p⁶ electronic configuration.
However, this rule is generally followed by main group elements only.
Exception: <u>SF₆ molecule</u>
In this molecule, six fluorine atoms are attached to the central sulfur atom by single covalent bonds.
<u>Each fluorine atom has 8 electrons in their valence shells</u>. Thus, it <u>follows the octet rule.</u>
Whereas, there are <u>12 electrons around the central sulfur atom</u> in the SF₆ molecule. Therefore, <u>sulfur does not follow the octet rule.</u>
<u>Therefore, the SF₆ molecule is known as a </u><u>hypervalent molecule</u><u> or expanded-valence molecule.</u>