Answer:
The probability that the average length of rods in a randomly selected bundle of steel rods is greater than 259 cm is 0.65173.
Step-by-step explanation:
We are given that a company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 259.2 cm and a standard deviation of 2.1 cm. For shipment, 17 steel rods are bundled together.
Let
= <u><em>the average length of rods in a randomly selected bundle of steel rods</em></u>
The z-score probability distribution for the sample mean is given by;
Z =
~ N(0,1)
where,
= population mean length of rods = 259.2 cm
= standard deviaton = 2.1 cm
n = sample of steel rods = 17
Now, the probability that the average length of rods in a randomly selected bundle of steel rods is greater than 259 cm is given by = P(
> 259 cm)
P(
> 259 cm) = P(
>
) = P(Z > -0.39) = P(Z < 0.39)
= <u>0.65173</u>
The above probability is calculated by looking at the value of x = 0.39 in the z table which has an area of 0.65173.
Can you take a picture of the question so I can solve it
9514 1404 393
Answer:
see below
Step-by-step explanation:
It is easiest to compare the equations when they are written in the same form.
The first set can be written in slope-intercept form.
y = 2x +7
y = 2x +7 . . . . add 2x
These equations are <em>identical</em>, so have infinitely many solutions.
__
The second set can be written in standard form.
y +4x = -5
y +4x = -10
These equations <em>differ only in their constant</em>, so have no solutions.
__
The third set is already written in slope-intercept form. The equations have <em>different slopes</em>, so have exactly one solution.
Answer:
0.1 = 10% probability that the class length is between 51.5 and 51.7 min, that is, P(51.5 < X < 51.7) = 0.1.
Step-by-step explanation:
A distribution is called uniform if each outcome has the same probability of happening.
The uniform distributon has two bounds, a and b, and the probability of finding a value between c and d is given by:

The lengths of a professor's classes has a continuous uniform distribution between 50.0 min and 52.0 min.
This means that 
If one such class is randomly selected, find the probability that the class length is between 51.5 and 51.7 min.

0.1 = 10% probability that the class length is between 51.5 and 51.7 min, that is, P(51.5 < X < 51.7) = 0.1.
Answer:
15
Step-by-step explanation:
Hope this helps
Please pick me as the brainest