The answer would be “B” because humans would need water, protection from radiation so we don’t melt or burn to death lol, and a gaseous atmosphere because we would need oxygen.
Answer:

Explanation:
As we know that initial speed of the fall of the stone is ZERO

also the acceleration due to gravity on Mars is g
so we have

now we have

now if the same is dropped for 4t seconds of time
then again we will use above equation



Answer:
You're four sentences should include about how the roller coaster has the most potential energy at the top of the track, and the opposing energy, "kinetic" has the most kinetic energy when going down the hill.
Explanation:
Kinetic - In-Motion.
Potential - Gathering Energy to go into Motion.
( I'll try to answer questions to clear up confusion. )
Answer:
It is possible because, the TV broadcast audio and video signals in radio frequency which travels at the speed of light while the audio signals travel to those present in the stadium at the speed of sound which is over eight hundred thousand times slower than the speed of light
Explanation:
It is possible because of the following;
1. TV signals from the camera (including the captured sound) very close to the field of play are transmitted through the radio frequency bands and as such are a form of electromagnetic radiation that travels at the speed of light which is about 300,000 km/second
It will therefore, take 1 second for a sound of the game to reach someone located at 300,000,000 meters watching a live televised game
2. The speed of sound is about 343 m/second and it therefore takes up to 2 seconds for a sound to reach someone 686 meters away from the ball in the stadium.
Answer:
Heat flows from higher to lower temperature. So when you keep hot things in normal temperature, the heat from hot object transfers to the environment until they are both on the same level. Same happens when a cold object is kept in normal room temperature, the heat from the environment transfers to the cold object until they are both equal. its all about achieving the equilibrium in a system