<span>Easy, take the top off your Thermos bottle filled with hot coffee. Assuming perfect insulation, that hot coffee is isolated from the environment; but when the top is opened the heat can now escape to that environment.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>
Answer:
Surely Achilles will catch the Tortoise, in 400 seconds
Explanation:
The problem itself reduces the interval of time many times, almost reaching zero. However, if we assume the interval constant, then it is clear that in two hours Achilles already has surpassed the Tortoise (20 miles while the Tortoise only 3).
To calculate the time, we use kinematic expression for constant speed:

The moment that Achilles catch the tortoise is found by setting the same final position for both (and same time as well, since both start at the same time):

Answer:
The Production Possibilities Curve (PPC) is a model used to show the tradeoffs associated with allocating resources between the production of two goods. The PPC can be used to illustrate the concepts of scarcity, opportunity cost, efficiency, inefficiency, economic growth, and contractions.
Explanation:
I hope this helps
If you heat that air by 100 degrees F, it weighs about 7 grams less. Therefore, each cubic foot of air contained in a hot air balloon can lift about 7 grams. That's not much, and this is why hot air balloons are so huge -- to lift 1,000 pounds, you need about 65,000 cubic feet of hot air.
Answer:
354 m/s
Explanation:
For the second overtune (Third harmonic) of an open pipe,
λ = 2L/3................................ Equation 1
Where L = Length of the open pipe, λ = Wave length.
Given: L = 1.75 m.
Substitute into equation 1
λ = 2(1.75)/3
λ = 1.17 m.
From the question,
V = λf.......................... Equation 2
V = speed of sound in the room, f = frequency
Given: f = 303 Hz.
Substitute into equation 2
V = 1.17(303)
V = 353.5
V ≈ 354 m/s
Hence the right answer is 354 m/s