Acceleration due to gravity.
Answer:
Option (4)
Explanation:
There are two types of collision.
Perfectly elastic collision: the collision in which the momentum and kinetic energy is conserved. There is no loss of energy in other forms of energy.
Perfectly plastic collision: The collision in which the momentum is conserved and kinetic energy is not conserved. The two bodies stick after the collision.
Here, the bullet hits the block and then embedded in the block, it is the example of plastic collision.
Answer:
Explanation:
Let Torque due to friction be
F
Net torque
= 46 - F
Angular impulse = change in angular momentum
=( 46 - F ) x 17 = I X 580
When external torque is removed , only friction creates torque reducing its speed to zero in 120 s so
Angular impulse = change in angular momentum
F x 120 = I X 580
( 46 - F ) x 17 = F x 120
137 F = 46 x 17
F = 5.7 Nm
b )
Putting this value in first equation
5.7 x 120 = I x 580
I = 1.18 kg m²
<h2>
Option A is the correct answer.</h2>
Explanation:
Acceleration due to gravity

G = 6.67 × 10⁻¹¹ m² kg⁻¹ s⁻²
Let mass of earth be M and radius of earth be r.
We have

Now
A hypothetical planet has a mass of one-half that of the earth and a radius of twice that of the earth.
Mass of hypothetical planet, M' = M/2
Radius of hypothetical planet, r' = 2r
Substituting

Option A is the correct answer.