<h2>
Answer:</h2>
(a) 3.96 x 10⁵C
(b) 4.752 x 10⁶ J
<h2>
Explanation:</h2>
(a) The given charge (Q) is 110 A·h (ampere hour)
Converting this to A·s (ampere second) gives the number of coulombs the charge represents. This is done as follows;
=> Q = 110A·h
=> Q = 110 x 1A x 1h [1 hour = 3600 seconds]
=> Q = 110 x A x 3600s
=> Q = 396000A·s
=> Q = 3.96 x 10⁵A·s = 3.96 x 10⁵C
Therefore, the number of coulombs of charge is 3.96 x 10⁵C
(b) The energy (E) involved in the process is given by;
E = Q x V -----------------(i)
Where;
Q = magnitude of the charge = 3.96 x 10⁵C
V = electric potential = 12V
Substitute these values into equation (i) as follows;
E = 3.96 x 10⁵ x 12
E = 47.52 x 10⁵ J
E = 4.752 x 10⁶ J
Therefore, the amount of energy involved is 4.752 x 10⁶ J
Answer:
The launching point is at a distance D = 962.2m and H = 39.2m
Explanation:
It would have been easier with the drawing. This problem is a projectile launching exercise, as they give us data after the window passes and the wall collides, let's calculate with this data the speeds at the point of contact with the window.
X axis
x = Vox t
t = x / vox
t = 7.1 / 340
t = 2.09 10-2 s
In this same time the height of the window fell
Y = Voy t - ½ g t²
Let's calculate the initial vertical speed, this speed is in the window
Voy = (Y + ½ g t²) / t
Voy = [0.6 + ½ 9.8 (2.09 10⁻²)²] /2.09 10⁻² = 0.579 / 0.0209
Voy = 27.7 m / s
We already have the speed at the point of contact with the window. Now let's calculate the distance (D) and height (H) to the launch point, for this we calculate the time it takes to get from the launch point to the window; at this point the vertical speed is Vy2 = 27.7 m / s
Vy = Voy - gt₂
Vy = 0 -g t₂
t₂ = Vy / g
t₂ = 27.7 / 9.8
t₂ = 2.83 s
This is the time it also takes to travel the horizontal and vertical distance
X = Vox t₂
D = 340 2.83
D = 962.2 m
Y = Voy₂– ½ g t₂²
Y = 0 - ½ g t2
H = Y = - ½ 9.8 2.83 2
H = 39.2 m
The launching point is at a distance D = 962.2m and H = 39.2m
Kelvin is a base unit of temperature
scale from SI that defines as zero degree Kelvin (absolute zero). The absolute
zero is a hypothetical statement that all molecular movement stops because
there is no transient of energy for the molecules to move. When converting
temperature in degree Celsius to Kelvin, add 273. You are given 600K and you
are asked to find it in degrees Celsius.
T(K) = T(C) + 273
600 K = T(C) + 273
T(C) = 600 – 273
T(C) = 327 °C
<span>The answer is letter B.</span>
I don't understand the language.....
3.00 is my correct answer this is what my teacher told me.thanks