The answer for the following question is mentioned below.
<u><em>Therefore no of moles present in the gas are 1.12 moles</em></u>
Explanation:
Given:
Pressure of gas (P) = 1.2 atm
Volume of a gas (V) = 50.0 liters
Temperature (T) =650 K
To calculate:
no of moles present in the gas (n)
We know;
According to the ideal gas equation;
We know;
<u>P × V = n × R × T
</u>
where,
P represents pressure of the gas
V represents volume of the gas
n represents no of the moles of a gas
R represents the universal gas constant
where the value of R is 0.0821 L atm mole^{-1} K^-1
T represents the temperature of the gas
As we have to calculate the no of moles of the gas;
n = 
n = \frac{1.2*50.0}{0.0821*650}
n = \frac{60}{53.365}
n = 1.12 moles
<u><em>Therefore no of moles present in the gas are 1.12 moles</em></u>
A coefficient is a whole number that appears before the formula in an equation.
To answer the question above, let us a basis of the 1000 mL or 1 L.
volume = (0.9928 g/mL)(1000mL) = 992.8 g
Then, determine the mass of the alcohol by multiplying the total mass by the decimal equivalent of 5%.
mass of alcohol = 0.05(992.8 g) = 49.64 g
Then, determine the number of moles of ethyl alcohol by dividing the mass of alcohol by the molar mass (46 g/mol).
n = 49.64 g/ (46 g/mol) = 1.08 mol
Then, divide the number of moles by the volume (our basis is 1 L)
molarity = 1.08 mol/ 1 L = 1.08 M