Answer:
C. to explore the composition of Mars
Explanation:
Initially, in 2019, an unmanned mission is planned to orbit the moon. The spacecraft would flyby the moon. In 2020's, the Exploration Mission 2 would be a manned mission on the same path around the moon. This would be the base for future goal of collecting samples from mars. In later of 2020's unmanned spacecraft would be sent to mars and a robot would collect the samples from the Martian surface. In 2030's, a crew would be sent to Mars.
Answer: A chemical process must occur and then changes between the state of the reactants and the state of the products can be determined
Explanation: Enthalpy represents the sum of the energy of the system with the product of the pressure and volume of that system. As a thermodynamic property, it expresses the ability to release heat from the system. In fact, enthalpy tells us how much heat and work has changed during the chemical reaction under constant pressure. When measuring, measurements of the difference in enthalpy between the two states of the system is performed, before and after the chemical reaction, since total enthalpy can not be measured. This measurement of the enthalpy change can tell us, for example, whether the heat was released from the system during the reaction, or the system absorbed the heat.
Answer:
sodium hexachloroplatinate(IV)- Na2[PtCl6]
dibromobis(ethylenediamine)cobalt(III) bromide- [Co(en)2Br2]Br
pentaamminechlorochromium(III) chloride-[Cr(NH3)5Cl]Cl2
Explanation:
The formulas of the various coordination compounds can be written from their names taking cognisance of the metal oxidation state as shown above. The oxidation state of the metal will determine the number of counter ions present in the coordination compound.
The number ligands are shown by subscripts attached to the ligand symbols. Remember that bidentate ligands such as ethylenediamine bonds to the central metal ion via two donors.
Answer:
Explanation:
The theory or working principle of Atomic Emission Spectroscopy involves the examination of the wavelengths of photons discharged by atoms and molecules as they transit from a high energy state to a low energy state. A characteristic set of wavelengths is emitted by each element or substance which depends on its electronic structure.