Answer:
(a) T = W/2(1-tanθ) (b) 39.81°
Explanation:
(a) The equation for tension (T) can be derived by considering the summation of moment in the clockwise direction. Thus:
Summation of moment in clockwise direction is equivalent to zero. Therefore,
T*l*(sinθ) + W*(l/2)*cosθ - T*l*cosθ = 0
T*l*(cosθ - sinθ) = W*(l/2)*cosθ
T = W*cosθ/2(cosθ - sinθ)
Dividing both the numerator and denominator by cosθ, we have:
T = [W*cosθ/cosθ]/2[(cosθ - sinθ)/cosθ] = W/2(1-tanθ)
(b) If T = 3W, then:
3W = W/2(1-tanθ),
Further simplification and rearrangement lead to:
1 - tanθ = 1/6
tanθ = 1 - (1/6) = 5/6
θ = tan^(-1) 5/6 = 39.81°
C is your answers!!!!!$3&2)//
Answer:d
Explanation:
Given
Temperature
Also 
R=287 J/kg
Flow will be In-compressible when Mach no.<0.32
Mach no.
(a)
Mach no.
Mach no.=0.63
(b)
Mach no.
Mach no.=0.31
(c)
Mach no.
Mach no.=1.27
(d)
Mach no.
Mach no.=0.127
From above results it is clear that for Flow at velocity 200 km/h ,it will be incompressible.
Explanation:
Note: Refer the diagram below
Obtaining data from property tables
State 1:

State 2:

State 3:

State 4:
Throttling process 
(a)
Magnitude of compressor power input


(b)
Refrigerator capacity



(c)
Cop:


Given:
Pressure,
= 1300 kPa
Temperature,
= 
= 100 kPa
velocity, v = 40 m/s
A = 1
Solution:
For air propertiess at
= 1300 kPa
= 
= 793kJ/K
= 
and also at
= 100 kPa
= 401 KJ/K
= 
a) Mass flow rate is given by:

Now,
= 46.51 kg/s
b) for the power produced by turbine, 
= 18.231 MW