1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fofino [41]
3 years ago
11

The jib crane is supported by a pin at Cand rod AB. The rod can withstand a maximum tension of 40 kN. If the load has a mass of

2000 kg, with its center of mass located at G. Determine its maximum allowable distance x and the corresponding horizontal and vertical components of reaction at C.
Engineering
1 answer:
lakkis [162]3 years ago
6 0

Answer:

The maximum allowable distance = 5 m

Explanation:

Data:

There will be three forces on the jib. Let the forces be denoted as:

C_{x}, C_{y} and the force on pole AB

To find the angle AB makes with the horizontal beam:

tan^{-1}(\frac{3}{4}) = 36.8699

The load has a mass of 2 000 kg then, the force will be:

F = mg, where g = 9.81 m/s²

  = 2000* 9.81 = 19 620 N

Breaking AB into its x and y coordinates:

AB_{x}=ABcos(36.8699)\\AB_{y} = ABsin(36.8699)

Then,

∑M_{c} = 0

0 = (4)(AB sin (36.8699) + 0.2 (AB cos (36.8699) - (5*19620)\\AB = 38 320. 3 N

∑F_{x} = 0\\C_{x} = AB cos(36.8699)\\C_{x} = 30 656.2 N

∑F_{y} = 0\\C_{y} + AB sin (36.8699) - 19 620 = 0\\C_{y} = - 3 372.18 N

so the components of the forces will be 30 656.2 N and - 3 372.18 N

You might be interested in
What is an example of a traditional career?
vladimir2022 [97]

Answer:

C, Teacher

Explanation:

7 0
3 years ago
Read 2 more answers
Consider a modification of the air-standard Otto cycle in which the isentropic compression and expansion processes are each repl
Ulleksa [173]

Answer:

The answers to the question are

(1) Process 1 to 2

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

(2) Process 2 to 3

W = 0

Q = 1135.376 kJ/kg

(3) Process 3 to 4

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

(4) Process 4 to 3

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency = 49.9 %

(c) The mean effective pressure is 9.44 bar

Explanation:

(a) Volume compression ratio \frac{v_1}{v_2}  = 10

Initial pressure p₁ = 1 bar

Initial temperature, T₁ = 310 K

cp = 1.005 kJ/kg⋅K

Temperature T₃ = 2200 K from the isentropic chart of the Otto cycle

For a polytropic process we have

\frac{p_1}{p_2}  = (\frac{v_2}{v_1} )^n Therefore p₂ = p₁ ÷ (\frac{v_2}{v_1} )^n = (1 bar) ÷ (\frac{1}{10} )^{1.3} = 19.953 bar

Similarly for a polytropic process we have

\frac{T_1}{T_2}  = (\frac{v_2}{v_1} )^{n-1} or T₂ = T₁ ÷ (\frac{v_2}{v_1} )^{n-1} = \frac{310}{0.1^{0.3}} = 618.531 K

The molar mass of air is 28.9628 g/mol.

Therefore R = \frac{8.3145}{28.9628} = 0.287 kJ/kg⋅K

cp = 1.005 kJ/kg⋅K Therefore cv = cp - R =  1.005- 0.287 = 0.718 kJ/kg⋅K

1). For process 1 to 2 which is polytropic process we have

W = \frac{R(T_2-T_1)}{n-1} = \frac{0.287(618.531-310)}{1.3 - 1}= 295.16 kJ/kg

Q =(\frac{n-\gamma}{\gamma - 1} )W = (\frac{1.3-1.4}{1.4-1} ) 295.16 kJ/kg = -73.79 kJ/kg

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

2). For process 2 to 3 which is reversible constant volume heating we have

W = 0 and Q = cv×(T₃ - T₂) = 0.718× (2200-618.531) = 1135.376 kJ/kg

W = 0

Q = 1135.376 kJ/kg

3). For process 3 to 4 which is polytropic process we have

W = \frac{R(T_4-T_3)}{n-1} = Where T₄ is given by  \frac{T_4}{T_3}  = (\frac{v_3}{v_4} )^{n-1} or T₄ = T₃ ×0.1^{0.3}

= 2200 ×0.1^{0.3}  T₄ = 1102.611 K

W =  \frac{0.287(1102.611-2200)}{1.3 - 1}= -1049.835 kJ/kg

and Q = 262.459 kJ/kg

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

4). For process 4 to 1 which is reversible constant volume cooling we have

W = 0 and Q = cv×(T₁ - T₄) = 0.718×(310 - 1102.611) = -569.09 kJ/kg

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency is given by

\eta = 1-\frac{T_4-T_1}{T_3-T_2} =1-\frac{1102.611-310}{2200-618.531} = 0.499 or 49.9 % Efficient

(c) The mean effective pressure is given by

p_{m}  = \frac{p_1r[(r^{n-1}-1)(r_p-1)]}{ (n-1)(r-1)}  where r = compression ratio and r_p = \frac{p_3}{p_2}

However p₃ = \frac{p_2T_3}{T_2} =\frac{(19.953)(2200)}{618.531} =70.97 atm

r_p = \frac{p_3}{p_2} = \frac{70.97}{19.953}  = 3.56

Therefore p_m =\frac{1*10*[(10^{0.3}-1)(3.56-1)]}{0.3*9} = 9.44 bar

Please find attached generalized diagrams of the Otto cycle

8 0
3 years ago
How fast is a 2012 nissan sentra<br>speed and acceleration ​
Alika [10]

Answer:

it has 15 horsepower to 300 horsepower and it weighs 2,906 to 3,131

Explanation:

its torque is 142 to 180

it has a inline 4 engine

there's a SE-R which has a turbo

4 0
3 years ago
The following electrical characteristics have been determined for both intrinsic and p-type extrinsic gallium antimonide (GaSb)
xxTIMURxx [149]

Answer:

0.5m^2/Vs and 0.14m^2/Vs

Explanation:

To calculate the mobility of electron and mobility of hole for gallium antimonide we have,

\sigma = n|e|\mu_e+p|e|\mu_h (S)

Where

e= charge of electron

n= number of electrons

p= number of holes

\mu_e= mobility of electron

\mu_h=mobility of holes

\sigma = electrical conductivity

Making the substitution in (S)

Mobility of electron

8.9*10^4=(8.7*10^{23}*(-1.602*10^{-19})*\mu_e)+(8.7*10^{23}*(-1.602*10^{-19})*\mu_h)

0.639=\mu_e+\mu_h

Mobility of hole in (S)

2.3*10^5 = (7.6*10^{22}*(-1.602*10^{-19})*\mu_e)+(1*10^{25}*(-1.602*10^{-19}*\mu_h))

0.1436 = 7.6*10^{-3}\mu_e+\mu_h

Then, solving the equation:

0.639=\mu_e+\mu_h (1)

0.1436 = 7.6*10^{-3}\mu_e+\mu_h (2)

We have,

Mobility of electron \mu_e = 0.5m^2/V.s

Mobility of hole is \mu_h = 0.14m^2/V.s

6 0
3 years ago
This is hard please help me you will give brainlist
Musya8 [376]
It spirals clockwise
5 0
3 years ago
Read 2 more answers
Other questions:
  • Use the convolutional integral to find the response of an LTI system with impulse response ℎ(????) and input x(????). Sketch the
    8·1 answer
  • A) A cross-section of a solid circular rod is subject to a torque of T = 3.5 kNâ‹…m. If the diameter of the rod is D = 5 cm, wha
    10·1 answer
  • What are four engineering degrees that can help lead you to becoming an aerospace engineer
    6·1 answer
  • Amplifiers are extensively used in the baseband portion of a radio receiver system to condition the baseband signal to produce a
    5·1 answer
  • Consider uniaxial extension of a test specimen. It has gauge length L = 22 cm (the distance between where it is clamped in the t
    6·1 answer
  • Find the value of P(-1.5≤Z≤2)
    12·1 answer
  • In homes today, what is behind the reason for flashover fires occurring much more rapidly than in the past generations?
    8·1 answer
  • Why is “land-use planning” an appropriate name for urban planning?
    8·2 answers
  • PDC Bank is working on creating an AI application that enables customers to send SMS to the AI application to allow banking acti
    9·1 answer
  • A(n) _____ is an apparatus that changes alternating current (AC) to direct current (DC)
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!