1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luden [163]
3 years ago
8

The heat flux through a 1-mm thick layer of skin is 1.05 x 104 W/m2. The temperature at the inside surface is 37°C and the tempe

rature at the outside surface is 30°C.a. What is the thermal conductivity of the skin?b. A layer of clothing material with half the thermal conductivity of skin and twice the thickness of skin is placed on the outside surface of the skin. If the outside surface of the clothing is maintained at 30°C, what is the new heat flux from the skin and what is the temperature at the skin-insulation interface?
Engineering
1 answer:
miss Akunina [59]3 years ago
3 0

Answer:

a) Thermal conductivity of skin: k_{skin}=1.5W/mK

b) Temperature of interface: T_{interface}=35.6\°C

Heat flux through skin: \frac{Q}{A}=2100W/m^2

Explanation:

a)

k=\frac{QL}{A(T_{2}-T_{1})}

Where: k is thermal conductivity of a material, \frac{Q}{A} is heat flux through a material, L is the thickness of the material, T_{1} is the temperature on the first side and T_{2} is the temperature on the second side

k_{skin}=\frac{QL}{A(T_{2}-T_{1})}

k_{skin}=\frac{Q}{A}*\frac{L}{(T_{2}-T_{1})}

k_{skin}=1.05*10^{4}*\frac{1*10^{-3}}{(37-30)}

k_{skin}=1.5W/mK

b)

k_{insulation}=\frac{k_{skin}}{2}

k_{insulation}=\frac{1.5}{2}

k_{insulation}=0.75W/mK

The heat flux between both surfaces is constant, assuming the temperature is maintained at each surface.

\frac{Q}{A}=\frac{k(T_{2}-T_{1})}{L}

\frac{k_{skin}(T_{skin}-T_{interface})}{L_{skin}}=\frac{k_{insulation}(T_{interface}-T_{insulation})}{L_{insulation}}

\frac{1.5*(37-T_{interface})}{0.001}=\frac{0.75*(T_{interface}-30)}{0.002}

55500-1500T_{interface}=375T_{interface}-11250

1875T_{interface}=66750

T_{interface}=35.6\°C

\frac{Q}{A}=\frac{k_{skin}(T_{skin}-T_{interface})}{L_{skin}}

\frac{Q}{A}=\frac{1.5*(37-35.6)}{0.001}

\frac{Q}{A}=2100W/m^2

You might be interested in
Tech a says you should push the wrench when braking a fastener loose. Tech b says that you should pull the wrench when braking a
Kay [80]

Answer:

tech b because gut feeling

Explanation:

4 0
3 years ago
In the engineering design and prototyping process, what is the advantage of drawings and symbols over written descriptions?
MrMuchimi

The advantages that can be associated to

drawings and symbols over written descriptions in engineering design and prototyping process are;

Communicate design ideas as well as technical information to engineers.

Symbols and drawings can be universal which means it is easy to interpret any where by professionals.

  • An engineering drawing serves as complex dimensional object and symbol use by engineer to communicate.

  • Drawings and symbols makes it easier to communicate design ideas and technical information to engineers and and how the process will go.

Therefore, drawings and symbols is universal to all engineer unlike written one.

Learn more at:

brainly.com/question/20925313?referrer=searchResults

4 0
3 years ago
Which of the following requirement statements is an example of a breakdown of the accuracy standard?
const2013 [10]

Answer:

<u>The automobile rental prices shall show all taxes (including a 6% state tax).</u>

Explanation:

Im pretty sure

4 0
3 years ago
What does an engineer do? List as many types of engineers as you can.
BARSIC [14]

Answer:

Mechanical Engineering

Chemical Engineering

Civil Engineering

Explanation:

I got it from my old homework And I learn those at school ( Thank You For The Points)

7 0
3 years ago
What is the thermal efficiency of this regeneration cycle in terms of enthalpies and fractions of total flow?
irga5000 [103]

Answer:

\eta =\dfrac{(h_3-h_4)-(h_2-h_1)}{(h_3-h_5)}

Explanation:

generally regeneration of cycle is used in the case of gas turbine. due to regeneration efficiency of turbine is increased but there is no effect on the on the net work out put of turbine.Actually in regeneration net heta input is decreases that is why total efficiency  increase.

 Now from T-S diagram

    W_{net}=W_{out}-W_{in}

   W_{net}=(h_3-h_4)-(h_2-h_1)

  Q_{in}=h_3-h_5

  Due to generation (h_5-h_2) amount of energy has been saved.

  Q_{generation}=Q_{saved}

So efficiency of cycle \eta =\frac{W_{net}}{Q_{in}}

  \eta =\dfrac{(h_3-h_4)-(h_2-h_1)}{(h_3-h_5)}

Effectiveness of re-generator

  \varepsilon =\dfrac{(h_5-h_2)}{(h_4-h_2)}

So the efficiency of regenerative cycle

\eta =\dfrac{(h_3-h_4)-(h_2-h_1)}{(h_3-h_5)}

7 0
3 years ago
Other questions:
  • Assuming the torsional yield strength of a compression spring is 0.43Sut and the maximum shear stress is equal to 434MPa. What i
    9·1 answer
  • A capillary tube is immersed vertically in a water container. Knowing that water starts to evaporate when the pressure drops bel
    11·1 answer
  • WHAT IS A TOROID IN HYDRAULUCS?
    11·2 answers
  • (a) Consider a germanium semiconductor at T 300 K. Calculate the thermal equilibrium electron and hole concentrations for (i) Nd
    7·1 answer
  • What quantity measures the effect of change?
    12·2 answers
  • Determine the slopes and deflections at points B and C for the beam shown below by the moment-area method. E=constant=70Gpa I=50
    10·1 answer
  • A series of end-milling cuts is currently used to produce an aluminum part that is an aircraft component. The purpose of the mac
    14·1 answer
  • Nitrogen (N2) enters an insulated compressor operating at steady state at 1 bar, 378C with a mass flow rate of 1000 kg/h and exi
    8·1 answer
  • What is equation for surface area?
    9·1 answer
  • 1. Làm thế nào để đảm bảo tính khả thi của văn bản hành chính ?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!