Answer:
please mark me as a brainleast
Explanation:
hahahahhahaahhahahahahahahahahahahahahahahahaahhhahhhahaahahhaahhhahahaah
Business cycle and its growth followed by economic contraction the amount of time it takes a business to produce products in the following way.
Explanation:
The business cycle is the periodic but irregular up-and-down movement in economic activity, measured by fluctuations in real gross domestic product (GDP) and other macroeconomic variables.
A business cycle is typically characterized by four phases—recession, recovery, growth, and decline—that repeat themselves over time.
Economists note, however, that complete business cycles vary in length. The duration of business cycles can be anywhere from about two to twelve years, with most cycles averaging six years in length.
FACTORS THAT SHAPE BUSINESS CYCLES
Volatility of Investment Spending
- Variations in investment spending is one of the important factors in business cycles. Investment spending is considered the most volatile component of the aggregate or total demand (it varies much more from year to year than the largest component of the aggregate demand, the consumption spending), and empirical studies by economists have revealed that the volatility of the investment component is an important factor in explaining business cycles in the United States.
Momentum
Technological Innovations
Variations in Inventories
Fluctuations in Government Spending
Politically Generated Business Cycles
Monetary Policies
Fluctuations in Exports and Imports
Answer:

Explanation:
Previous concepts
Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:

Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =
MO, where MO is the moment of the force F about point O. The equation expressing the rate of change of angular momentum is this one:
MO = H˙ O
Principle of Angular Impulse and Momentum
The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:

Solution to the problem
For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is
".
If we analyze the staritning point we see that the initial velocity can be founded like this:

And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:

](https://tex.z-dn.net/?f=0%2B%5Csum%20%5Cint_%7B0%7D%5E%7B4%7D%2020t%20%280.15m%29%20dt%20%3D0.46875%20%5Comega%20%2B%2030kg%5B%5Comega%280.15m%29%5D%280.15m%29)
And if we integrate the left part and we simplify the right part we have

And if we solve for
we got:

Answer:
- def median(l):
- if(len(l) == 0):
- return 0
- else:
- l.sort()
- if(len(l)%2 == 0):
- index = int(len(l)/2)
- mid = (l[index-1] + l[index]) / 2
- else:
- mid = l[len(l)//2]
- return mid
-
- def mode(l):
- if(len(l)==0):
- return 0
-
- mode = max(set(l), key=l.count)
- return mode
-
- def mean(l):
- if(len(l)==0):
- return 0
- sum = 0
- for x in l:
- sum += x
- mean = sum / len(l)
- return mean
-
- lst = [5, 7, 10, 11, 12, 12, 13, 15, 25, 30, 45, 61]
- print(mean(lst))
- print(median(lst))
- print(mode(lst))
Explanation:
Firstly, we create a median function (Line 1). This function will check if the the length of list is zero and also if it is an even number. If the length is zero (empty list), it return zero (Line 2-3). If it is an even number, it will calculate the median by summing up two middle index values and divide them by two (Line 6-8). Or if the length is an odd, it will simply take the middle index value and return it as output (Line 9-10).
In mode function, after checking the length of list, we use the max function to estimate the maximum count of the item in list (Line 17) and use it as mode.
In mean function, after checking the length of list, we create a sum variable and then use a loop to add the item of list to sum (Line 23-25). After the loop, divide sum by the length of list to get the mean (Line 26).
In the main program, we test the three functions using a sample list and we shall get
20.5
12.5
12