1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luden [163]
3 years ago
8

The heat flux through a 1-mm thick layer of skin is 1.05 x 104 W/m2. The temperature at the inside surface is 37°C and the tempe

rature at the outside surface is 30°C.a. What is the thermal conductivity of the skin?b. A layer of clothing material with half the thermal conductivity of skin and twice the thickness of skin is placed on the outside surface of the skin. If the outside surface of the clothing is maintained at 30°C, what is the new heat flux from the skin and what is the temperature at the skin-insulation interface?
Engineering
1 answer:
miss Akunina [59]3 years ago
3 0

Answer:

a) Thermal conductivity of skin: k_{skin}=1.5W/mK

b) Temperature of interface: T_{interface}=35.6\°C

Heat flux through skin: \frac{Q}{A}=2100W/m^2

Explanation:

a)

k=\frac{QL}{A(T_{2}-T_{1})}

Where: k is thermal conductivity of a material, \frac{Q}{A} is heat flux through a material, L is the thickness of the material, T_{1} is the temperature on the first side and T_{2} is the temperature on the second side

k_{skin}=\frac{QL}{A(T_{2}-T_{1})}

k_{skin}=\frac{Q}{A}*\frac{L}{(T_{2}-T_{1})}

k_{skin}=1.05*10^{4}*\frac{1*10^{-3}}{(37-30)}

k_{skin}=1.5W/mK

b)

k_{insulation}=\frac{k_{skin}}{2}

k_{insulation}=\frac{1.5}{2}

k_{insulation}=0.75W/mK

The heat flux between both surfaces is constant, assuming the temperature is maintained at each surface.

\frac{Q}{A}=\frac{k(T_{2}-T_{1})}{L}

\frac{k_{skin}(T_{skin}-T_{interface})}{L_{skin}}=\frac{k_{insulation}(T_{interface}-T_{insulation})}{L_{insulation}}

\frac{1.5*(37-T_{interface})}{0.001}=\frac{0.75*(T_{interface}-30)}{0.002}

55500-1500T_{interface}=375T_{interface}-11250

1875T_{interface}=66750

T_{interface}=35.6\°C

\frac{Q}{A}=\frac{k_{skin}(T_{skin}-T_{interface})}{L_{skin}}

\frac{Q}{A}=\frac{1.5*(37-35.6)}{0.001}

\frac{Q}{A}=2100W/m^2

You might be interested in
4.68 Steam enters a turbine in a vapor power plant operating at steady state at 560°C, 80 bar, and exits as a saturated vapor at
garik1379 [7]

Answer:

please mark me as a brainleast

Explanation:

hahahahhahaahhahahahahahahahahahahahahahahahaahhhahhhahaahahhaahhhahahaah

3 0
3 years ago
What is a business cycle? a period of economic growth followed by economic contraction the amount of time it takes a business to
Rzqust [24]

Business cycle and its growth followed by economic contraction the amount of time it takes a business to produce products in the following way.

Explanation:

The business cycle is the periodic but irregular up-and-down movement in economic activity, measured by fluctuations in real gross domestic product (GDP) and other macroeconomic variables.

A business cycle is typically characterized by four phases—recession, recovery, growth, and decline—that repeat themselves over time.

Economists note, however, that complete business cycles vary in length. The duration of business cycles can be anywhere from about two to twelve years, with most cycles averaging six years in length.

FACTORS THAT SHAPE BUSINESS CYCLES

Volatility of Investment Spending

  • Variations in investment spending is one of the important factors in business cycles. Investment spending is considered the most volatile component of the aggregate or total demand (it varies much more from year to year than the largest component of the aggregate demand, the consumption spending), and empirical studies by economists have revealed that the volatility of the investment component is an important factor in explaining business cycles in the United States.

Momentum

Technological Innovations

Variations in Inventories

Fluctuations in Government Spending

Politically Generated Business Cycles

Monetary Policies

Fluctuations in Exports and Imports

7 0
3 years ago
Read 2 more answers
Give me top 5 British snacks
tia_tia [17]

Answer:

1. Mini Cheddars

2. Sausage Roll

3. Monster Munch

4. Cheese Twists

5. Flapjacks

6 0
2 years ago
The 30-kg gear is subjected to a force of P=(20t)N where t is in seconds. Determine the angular velocity of the gear at t=4s sta
tatyana61 [14]

Answer:

\omega =\frac{24}{1.14375}=20.983\frac{rad}{s}

Explanation:

Previous concepts

Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular  momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:

H_o =r x mv=rxL

Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =

MO, where MO is the moment of the force F about point O. The equation expressing the rate of change  of angular momentum is this one:

MO = H˙ O

Principle of Angular Impulse and Momentum

The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular  momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:

\int_{t_1}^{t_2}M_O dt = \int_{t_1}^{t_2}H_O dt=H_0t2 -H_0t1

Solution to the problem

For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is I_o =mK^2_o =30kg(0.125m)^2 =0.46875 kgm^2".

If we analyze the staritning point we see that the initial velocity can be founded like this:

v_o =\omega r_{OIC}=\omega (0.15m)

And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:

H_Ai +\sum \int_{t_i}^{t_f} M_A dt =H_Af

0+\sum \int_{0}^{4} 20t (0.15m) dt =0.46875 \omega + 30kg[\omega(0.15m)](0.15m)

And if we integrate the left part and we simplify the right part we have

1.5(4^2)-1.5(0^2) = 0.46875\omega +0.675\omega=1.14375\omega

And if we solve for \omega we got:

\omega =\frac{24}{1.14375}=20.983\frac{rad}{s}

8 0
3 years ago
PythonA group of statisticians at a local college has asked you to create a set of functionsthat compute the median and mode of
skelet666 [1.2K]

Answer:

  1. def median(l):
  2.    if(len(l) == 0):
  3.       return 0
  4.    else:
  5.        l.sort()
  6.        if(len(l)%2 == 0):
  7.            index = int(len(l)/2)
  8.            mid = (l[index-1] + l[index]) / 2
  9.        else:
  10.            mid = l[len(l)//2]  
  11.        return mid  
  12. def mode(l):
  13.    if(len(l)==0):
  14.        return 0
  15.    mode = max(set(l), key=l.count)
  16.    return mode  
  17. def mean(l):
  18.    if(len(l)==0):
  19.        return 0
  20.    sum = 0
  21.    for x in l:
  22.        sum += x
  23.    mean = sum / len(l)
  24.    return mean
  25. lst = [5, 7, 10, 11, 12, 12, 13, 15, 25, 30, 45, 61]
  26. print(mean(lst))
  27. print(median(lst))
  28. print(mode(lst))

Explanation:

Firstly, we create a median function (Line 1). This function will check if the the length of list is zero and also if it is an even number. If the length is zero (empty list), it return zero (Line 2-3). If it is an even number, it will calculate the median by summing up two middle index values and divide them by two (Line 6-8). Or if the length is an odd, it will simply take the middle index value and return it as output (Line 9-10).

In mode function, after checking the length of list, we use the max function to estimate the maximum count of the item in list (Line 17) and use it as mode.

In mean function,  after checking the length of list,  we create a sum variable and then use a loop to add the item of list to sum (Line 23-25). After the loop, divide sum by the length of list to get the mean (Line 26).

In the main program, we test the three functions using a sample list and we shall get

20.5

12.5

12

3 0
3 years ago
Other questions:
  • Two kg of N2 at 450 K, 7 bar is contained in a rigid tank connected by a valve to another rigid tank holding 1 kg of O2 at 300 K
    13·1 answer
  • Can i join three 12 volts batteriesto give me 24 volts output​
    9·1 answer
  • To 3 significant digits, what is the change of entropy of air in kJ/kgk if the pressure is decreased from 400 to 300 kPa and the
    15·1 answer
  • If engineering is easy then why don't most people join?
    15·2 answers
  • Two loads connected in parallel draw a total of 2.4 kW at 0.8 pf lagging from a 120-V rms, 60-Hz line. One load absorbs 1.5 kW a
    5·1 answer
  • Why did fprtmiu78t7ty87uhyu
    12·1 answer
  • 9. What is a whip check?
    12·1 answer
  • Complete the following sentence.
    10·1 answer
  • A bronze bushing 60 mm in outer diameter and 40 mm in inner diameter is to be pressed into a hollow steel cylinder of 120-mm out
    8·1 answer
  • Select the correct answer.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!