1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luden [163]
3 years ago
8

The heat flux through a 1-mm thick layer of skin is 1.05 x 104 W/m2. The temperature at the inside surface is 37°C and the tempe

rature at the outside surface is 30°C.a. What is the thermal conductivity of the skin?b. A layer of clothing material with half the thermal conductivity of skin and twice the thickness of skin is placed on the outside surface of the skin. If the outside surface of the clothing is maintained at 30°C, what is the new heat flux from the skin and what is the temperature at the skin-insulation interface?
Engineering
1 answer:
miss Akunina [59]3 years ago
3 0

Answer:

a) Thermal conductivity of skin: k_{skin}=1.5W/mK

b) Temperature of interface: T_{interface}=35.6\°C

Heat flux through skin: \frac{Q}{A}=2100W/m^2

Explanation:

a)

k=\frac{QL}{A(T_{2}-T_{1})}

Where: k is thermal conductivity of a material, \frac{Q}{A} is heat flux through a material, L is the thickness of the material, T_{1} is the temperature on the first side and T_{2} is the temperature on the second side

k_{skin}=\frac{QL}{A(T_{2}-T_{1})}

k_{skin}=\frac{Q}{A}*\frac{L}{(T_{2}-T_{1})}

k_{skin}=1.05*10^{4}*\frac{1*10^{-3}}{(37-30)}

k_{skin}=1.5W/mK

b)

k_{insulation}=\frac{k_{skin}}{2}

k_{insulation}=\frac{1.5}{2}

k_{insulation}=0.75W/mK

The heat flux between both surfaces is constant, assuming the temperature is maintained at each surface.

\frac{Q}{A}=\frac{k(T_{2}-T_{1})}{L}

\frac{k_{skin}(T_{skin}-T_{interface})}{L_{skin}}=\frac{k_{insulation}(T_{interface}-T_{insulation})}{L_{insulation}}

\frac{1.5*(37-T_{interface})}{0.001}=\frac{0.75*(T_{interface}-30)}{0.002}

55500-1500T_{interface}=375T_{interface}-11250

1875T_{interface}=66750

T_{interface}=35.6\°C

\frac{Q}{A}=\frac{k_{skin}(T_{skin}-T_{interface})}{L_{skin}}

\frac{Q}{A}=\frac{1.5*(37-35.6)}{0.001}

\frac{Q}{A}=2100W/m^2

You might be interested in
In the formula shown, k is a correction factor for nonideal mixing. In the worst case, k is usually estimated to be:_______. Cpp
LuckyWell [14K]

Answer:

d. 1.0

Explanation:

Correlation identifies the relationship between two variables. In the given scenario there is strong relation between non ideal mixing. The correction factor can be between -1 to 1 depending on the intensity of the relationship and dependency. The non ideal mixing efficiency is highly dependent on the factors that govern it this means there is high intensity relation so the k is estimated to be nearly 1.

3 0
3 years ago
1) Which step in the Design Process utilizes technical drawings to provide information necessary to
Natalija [7]

Answer: produce a product

Explanation:

7 0
2 years ago
Which size of impurity atom, smaller impurity atom or larger impurity atom, when located near a dislocation, will nullify some o
svp [43]

Answer:

Smaller impurity atom will nullify some of the compressive strain of a dislocation in a crystal. Because, smaller impurity atoms located near a dislocation creates tensile strain on atoms around it thereby partially nullifying compressive strain at the dislocation.

4 0
3 years ago
A water tank is completely filled with liquid waterat 20°C.The tank material is such that it can withstand tensioncaused by a vo
Xelga [282]

Answer:

Highest temperature rise allowable = ΔT = 21.22°C

Highest allowable temperature = ΔT + 20 = 41.22°C

Explanation:

From literature, the coefficient of volume expansion of water between 20°C and 50°C = β = (0.377 × 10⁻³) K⁻¹

Volume expansivity is given by

ΔV = V β ΔT

ΔV = Change in volume

V = initial volume

β = Coefficient of volume expansion = (0.377 × 10⁻³) K⁻¹ = 0.000377 K⁻¹

ΔT = Change in temperature = ?

It is given in the question that maximum volume increase the tank can withstand is

(ΔV/V) × 100% = 0.8%

(ΔV/V) = 0.008

V β ΔT = ΔV

β ΔT = (ΔV/V)

β ΔT = 0.008

ΔT = (0.008/β)

ΔT = (0.008/0.000377)

ΔT = 21.22°C

Highest temperature rise allowable = ΔT = 21.22°C

Highest allowable temperature = ΔT + 20 = 41.22°C

Hope this Helps

5 0
4 years ago
Go give some love to this video, thumbs up needed!!!<br> https://youtu.be/F6w_CqB0bZM
kolezko [41]

Answer:

i liked the vid

Explanation:

can i get brainliest pls

5 0
3 years ago
Other questions:
  • Find the mathematical equation for SF distribution and BM diagram for the beam shown in figure 1.​
    10·1 answer
  • The combustion of the paraffin oil, which is a highly refined fossil fuel product similar to kerosene composed of C14-C16 hydroc
    8·1 answer
  • Name one challenge for engineering managers wanting to implement the concurrent engineering concept
    12·1 answer
  • Two rods, with masses MA and MB having a coefficient of restitution, e, move along a common line on a surface, figure 2. a) Find
    8·1 answer
  • HIIIIIIIIII htrdcvbnjuytresdxcvbnjhytrdefghjkmnbvcdertyhjmn i'm soo bored
    9·2 answers
  • A misfire code is a type ____ DTC<br> A) 1 or 2<br> B) a or b<br> C) c or d<br> D l or ll
    15·1 answer
  • HELP PLEASE NEED ANSWERS NOW Upload your energy audit project that includes the labeled sketch you used, Information about kilow
    14·1 answer
  • A vibration system consists of a mass 50 kg, a spring of stiffness 30 kN/m and a damper. The
    13·1 answer
  • A. Briefly describe the microstructural difference between spheroidite and tempered martensite. Explain why tempered martensite
    14·1 answer
  • The thrust angle is checked by referencing
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!