Answer: Strictly a laboratory analysis and can only be done using the data obtained during analysis
Explanation:
To find a solution to this problem, you need to use the data collected during the lab work. A guide could be finding the possible forms of hydrated copper chlorides in reference books. Since it's also a lab work, you can definitely compare your data with lab mates.
The formula CuxCly.zH₂O and its name chloride hydrate already gives you an idea of the possibilities of the value of the integers, hence you can take a good guess for the identity of the unknown salt and calculate the theoretical formular weight for it. From the that you can proceed to also find the mass of water and copper from your lab analysis.
Answer:
is the total pressure of the tank.
Explanation:
Partial pressures of nitrogen = 
Partial pressure of oxygen = 
Total pressure of gases in the tank = P
Applying Dalton's law of partial pressures :


is the total pressure of the tank.
<h3><u>Answer;</u></h3>
Find the number of 1-foot cubes that fill the fish tank
<h3><u>Explanation;</u></h3>
Volume of a cuboid such as the fish tank is given by the product of length width and height;
Such that; Volume = length × width × height
Similarly, we can count the number of 1 foot cube that can fill the fish tank.
And since each cube has a volume of 1 cubic ft, then the number of cubes will be equivalent to the volume of the fish tank in cubic ft.
1. A) Colloids only
2. C) M<span>olecules of the dispersion medium colliding with dispered phase particles
Hope this helps!</span>
Answer:

Explanation:
We need to use the formula for heat of vaporization.

Identify the variables.
- The heat absorbed by the evaporating water is the <u>latent heat of vaporization. </u>For water, that is 2260 Joules per gram.
- Q is the energy, in this problem, 50,000 Joules.
- m is the mass, which is unknown.

Substitute the values into the formula.

We want to find the mass. We must isolate the variable, m.
m is being multiplied by 2260 J/g. The inverse operation of multiplication is division. Divide both sides by 2260 J/g.


Divide. Note that the Joules (J) will cancel each other out.


Round to the nearest whole number. The 1 in the tenth place tells us to leave the number as is.

The mass is about 22 grams, so choice B is correct.