25. C
26. B
27. A
28. D
29. D
30. A
31. B
32. D
33. B
34. A
Answer:
Because Rutherford's model was weak on the position of the electrons, Bohr focused on them. He hypothesized that electrons can move around the nucleus only at fixed distances from the nucleus based on the amount of energy they have. ... However, an electron could never exist in between two energy levels
The answer for the following problem is mentioned below.
- <u><em>Therefore number of molecules(N) present in the calcium phosphate sample are 19.3 × 10^23 molecules.</em></u>
Explanation:
Given:
mass of calcium phosphate (
) = 125.3 grams
We know;
molar mass of calcium phosphate (
) = (40×3) + 3 (31 +(4×16))
molar mass of calcium phosphate (
) = 120 + 3(95)
molar mass of calcium phosphate (
) = 120 +285 = 405 grams
<em>We also know;</em>
No of molecules at STP conditions(
) = 6.023 × 10^23 molecules
To solve:
no of molecules present in the sample(N)
We know;
N÷
=
N =(405×6.023 × 10^23) ÷ 125.3
N = 19.3 × 10^23 molecules
<u><em>Therefore number of molecules(N) present in the calcium phosphate sample are 19.3 × 10^23 molecules</em></u>
Answer:
1
Explanation:
4 HBr + O2 → 2H 20 + 2Br 2
...............
Answer:
Explanation:
When the amount of H2O2 is doubled while KI is kept constant, the rate of reaction doubles.
When the amount of KI is doubled and the amount of H2O2 is halved, the rate stays nearly constant.
2H2O2 (aq) → O2(g) + 2H2O (l) ------------- first order kinetics reaction.
Catalysts are KI, FeCl3 only, KCl is not a catalyst. Order: KI < MnO2 < Pb < FeCl3.
H2O2 + I– -> IO– + H2O (Step 1)
H2O2 + IO– -> I– + H2O + O2 (Step 2)
It can be seen that the iodine ion (provided by the KI solution) is a product as well as a reactant.
02(g)2Fe? (aq) + 2 H(a) 2 H 2 Fe3 (aq) H2O2(aq) + 2 Fe,Taq) H02(aq) 2 Fe (aq) 2 H (aq)